RESEARCH ON APPLYING THE SELF-PIERCE RIVETING (SPR) FOR DIE CASTING ALUMINUM ALLOYS

压铸 材料科学 铆钉 共晶体系 开裂 铸造 冶金 模具(集成电路) 延展性(地球科学) 合金 汽车工业 复合材料 机械工程 工程类 蠕动 纳米技术 航空航天工程
作者
Xuzhe Zhao
标识
DOI:10.25394/pgs.8041211.v1
摘要

Self-pierce riveting as a relative new technology has been used by automotive industry for decades. Because of the several benefits of the SPR technique, it has been widely used for joining the similar or dissimilar materials to satisfy the light-weighting requirements of automobile. There were many researchers and automotive manufacturers that had been investigated the SPR by experiments and applied this technique to their products. The SPR was designed for joining the materials with sufficient ductility because the joining process was going to introduce the large plastic deformation on the joint button area. Die casting aluminum alloy products became more and more popular to be used for structural components. However, the casting aluminum components have relative low ductility than the wrought alloy product. The cracking problems were easy to occur during the riveting process.In terms of the cracking issues on die casting aluminum products, an analysis was conducted in this study to investigate the influence of composition on cracking problem. And the cracking mechanism was also analyzed and summarized. Corresponding to the influence of silicon content difference and silicon morphology, heat treatment was used to modify the eutectic silicon morphology of the casting aluminum alloys to improve the rivetability. Once the silicon network was broken by the heat treatment, the rivetability of die casting aluminum was drastically increased and the cracks on joint button were also suppressed. Under the effect of heat treatment, the joint performance was tightly related to the variation of the eutectic silicon phase and the cracks on the joint button. The joint strength was obtained by shear test to investigate the influence of heat treatment and die depth. A novel cracking statistics has been generated and used to calculate the cracks on the joint button. Eventually, a comprehensive joint performance was obtained by taking into consideration of joint strength, heat treatment and die depth.Finally, the simulation of the SPR process was conducted and analyzed by FORGE. The die depth as the variable was used to investigate the strain and fracture distribution incross-section view of the joint. In terms of the initial results of the simulation, the die cavity with various sidewall incline angles was simulated to find the optimal die cavity geometry in order to improve the rivetability of the bottom material sheet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Subway完成签到,获得积分10
1秒前
充电宝应助29采纳,获得10
1秒前
2秒前
zgdzhj完成签到,获得积分10
2秒前
派大星星发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
Belinda发布了新的文献求助10
4秒前
梦红完成签到,获得积分10
4秒前
酷波er应助书记采纳,获得10
5秒前
5秒前
sdutzy完成签到,获得积分20
5秒前
nanshaokuingh发布了新的文献求助10
5秒前
EMC完成签到 ,获得积分10
6秒前
mimimi完成签到,获得积分10
6秒前
笑点低的代容完成签到,获得积分10
6秒前
值雨发布了新的文献求助10
7秒前
陈科研完成签到,获得积分10
7秒前
友好远航完成签到,获得积分10
7秒前
7秒前
浮游应助天真如松采纳,获得10
9秒前
Litm完成签到 ,获得积分10
9秒前
努力努力再努力CMY完成签到,获得积分10
10秒前
科研通AI6应助Nanco采纳,获得10
10秒前
马吉克wang完成签到,获得积分10
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
changping应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540496
求助须知:如何正确求助?哪些是违规求助? 4627087
关于积分的说明 14602207
捐赠科研通 4568067
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623