Prediction of the Profitability of Pairs Trading Strategy Using Machine Learning

统计套利 结对贸易 计算机科学 盈利能力指数 机器学习 计量经济学 交易策略 随机森林 技术分析 人工智能 支持向量机 算法交易 人工神经网络 预测建模 另类交易系统 经济 金融经济学 资本资产定价模型 财务 套利定价理论 风险套利
作者
Ronnachai Jirapongpan,Naragain Phumchusri
出处
期刊:Conference on Industrial Electronics and Applications 被引量:1
标识
DOI:10.1109/iciea49774.2020.9102013
摘要

Pairs trading strategy is one of the well-known quantitative trading strategy developed in 1980s by the team of scientists. There are many researchers trying to study and create the mathematical model to improve the pairs trading strategy on various assets such as cointegration method, OLS, Kalmann filter, Machine learning, etc. The purpose of the models is to generate the precise signals from pairs of assets to maximize the return based on statistical arbitrage of pairs trading strategy. In this paper, Stress Indicator pairs trading strategy is studied further. Stress Indicator pairs trading strategy is easy, straightforward and profitable. However, There are many factors which influence the profitability of the strategy, causing the loss trades. We purpose a novel approach by using the machine learning algorithm to learn the historical trades of Stress Indicator pairs trading strategy in foreign exchage rates and to predict the profitability in the future trades. The pairs of the exchange rate are filtered by choosing only the pairs which generate the positive average return per trade from Stress Indicator pairs trading strategy in the past. The capability of the ML models is to classify whether the signals from Stress Indicator pairs trading strategy is profitable or not before opening the positions. The powerful ML models, Artificial Neural network and XGBoost, are implemented in this study. Several factors which could influence the profitability such as correlation, volatility OLS beta are collected and used to train the model following the common step of ML training procedures such as features selection, Hyperparameter tuning and k-Fold cross validation to generate the capable models. Next, the performance of ANN and XGBoost is compared that which one performs better by the score matrix. The result shows that the performance of predicting the profitability is not significantly different. Both models mostly achieve 60% accuracy in In-sample data, but the accuracy in out-of-sample data is quite fluctuated. In other words, ML models are capable to classify the profitable signal from price behavior but may lack of consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joe完成签到,获得积分10
1秒前
2秒前
2秒前
科目三应助WWXWWX采纳,获得10
3秒前
xinlei2023发布了新的文献求助10
3秒前
大模型应助干净的一手采纳,获得10
4秒前
chaogeshiren完成签到,获得积分10
4秒前
4秒前
上官若男应助夏尔酱采纳,获得10
5秒前
他吞吞吐吐完成签到,获得积分10
6秒前
曲聋五完成签到 ,获得积分10
6秒前
7秒前
绾绾发布了新的文献求助10
7秒前
格格星发布了新的文献求助10
7秒前
xxww发布了新的文献求助10
7秒前
8秒前
8秒前
花的微笑发布了新的文献求助10
8秒前
LGChemistry完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
喜气洋洋完成签到 ,获得积分10
10秒前
10秒前
orixero应助猪猪朱采纳,获得30
11秒前
11秒前
12秒前
牛牛发布了新的文献求助10
12秒前
香蕉觅云应助Zhihu采纳,获得10
12秒前
弋禾火完成签到 ,获得积分10
12秒前
WWXWWX完成签到,获得积分10
12秒前
12秒前
13秒前
liuqiaozhutou发布了新的文献求助10
13秒前
15秒前
冷语发布了新的文献求助10
15秒前
邓可新发布了新的文献求助10
15秒前
贪玩菲音完成签到,获得积分10
16秒前
16秒前
wxt完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386