Prediction of the Profitability of Pairs Trading Strategy Using Machine Learning

统计套利 结对贸易 计算机科学 盈利能力指数 机器学习 计量经济学 交易策略 随机森林 技术分析 人工智能 支持向量机 算法交易 人工神经网络 预测建模 另类交易系统 经济 金融经济学 资本资产定价模型 财务 套利定价理论 风险套利
作者
Ronnachai Jirapongpan,Naragain Phumchusri
出处
期刊:Conference on Industrial Electronics and Applications 被引量:1
标识
DOI:10.1109/iciea49774.2020.9102013
摘要

Pairs trading strategy is one of the well-known quantitative trading strategy developed in 1980s by the team of scientists. There are many researchers trying to study and create the mathematical model to improve the pairs trading strategy on various assets such as cointegration method, OLS, Kalmann filter, Machine learning, etc. The purpose of the models is to generate the precise signals from pairs of assets to maximize the return based on statistical arbitrage of pairs trading strategy. In this paper, Stress Indicator pairs trading strategy is studied further. Stress Indicator pairs trading strategy is easy, straightforward and profitable. However, There are many factors which influence the profitability of the strategy, causing the loss trades. We purpose a novel approach by using the machine learning algorithm to learn the historical trades of Stress Indicator pairs trading strategy in foreign exchage rates and to predict the profitability in the future trades. The pairs of the exchange rate are filtered by choosing only the pairs which generate the positive average return per trade from Stress Indicator pairs trading strategy in the past. The capability of the ML models is to classify whether the signals from Stress Indicator pairs trading strategy is profitable or not before opening the positions. The powerful ML models, Artificial Neural network and XGBoost, are implemented in this study. Several factors which could influence the profitability such as correlation, volatility OLS beta are collected and used to train the model following the common step of ML training procedures such as features selection, Hyperparameter tuning and k-Fold cross validation to generate the capable models. Next, the performance of ANN and XGBoost is compared that which one performs better by the score matrix. The result shows that the performance of predicting the profitability is not significantly different. Both models mostly achieve 60% accuracy in In-sample data, but the accuracy in out-of-sample data is quite fluctuated. In other words, ML models are capable to classify the profitable signal from price behavior but may lack of consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助清子采纳,获得10
刚刚
WWW发布了新的文献求助30
刚刚
1秒前
遇见胡桃夹子完成签到,获得积分10
1秒前
宋牛奶的猫关注了科研通微信公众号
1秒前
胖头锦鲤发布了新的文献求助10
1秒前
hanqun1111完成签到,获得积分10
1秒前
vlots应助CreaJOE采纳,获得30
1秒前
慕青应助游悠悠采纳,获得10
1秒前
星辰大海应助vegetable采纳,获得10
2秒前
科研通AI6应助DORAAA采纳,获得10
2秒前
3秒前
jyh发布了新的文献求助10
3秒前
浮游应助guihai采纳,获得10
4秒前
大气伯云发布了新的文献求助10
6秒前
lw发布了新的文献求助10
8秒前
8秒前
思源应助淡定蜗牛采纳,获得10
9秒前
脑洞疼应助睡不醒的xx采纳,获得10
9秒前
科研通AI6应助yyy采纳,获得30
10秒前
阿氏之光完成签到,获得积分10
10秒前
单薄黑米发布了新的文献求助30
11秒前
游悠悠发布了新的文献求助10
11秒前
花影移完成签到,获得积分10
11秒前
无极微光应助ZZZ采纳,获得20
12秒前
14秒前
有志不在年糕完成签到,获得积分10
15秒前
老北京发布了新的文献求助10
16秒前
lw完成签到,获得积分20
17秒前
morlison完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
文静冷梅完成签到,获得积分10
20秒前
20秒前
帅玉玉发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997