Prediction of the Profitability of Pairs Trading Strategy Using Machine Learning

统计套利 结对贸易 计算机科学 盈利能力指数 机器学习 计量经济学 交易策略 随机森林 技术分析 人工智能 支持向量机 算法交易 人工神经网络 预测建模 另类交易系统 经济 金融经济学 资本资产定价模型 财务 套利定价理论 风险套利
作者
Ronnachai Jirapongpan,Naragain Phumchusri
出处
期刊:Conference on Industrial Electronics and Applications 被引量:1
标识
DOI:10.1109/iciea49774.2020.9102013
摘要

Pairs trading strategy is one of the well-known quantitative trading strategy developed in 1980s by the team of scientists. There are many researchers trying to study and create the mathematical model to improve the pairs trading strategy on various assets such as cointegration method, OLS, Kalmann filter, Machine learning, etc. The purpose of the models is to generate the precise signals from pairs of assets to maximize the return based on statistical arbitrage of pairs trading strategy. In this paper, Stress Indicator pairs trading strategy is studied further. Stress Indicator pairs trading strategy is easy, straightforward and profitable. However, There are many factors which influence the profitability of the strategy, causing the loss trades. We purpose a novel approach by using the machine learning algorithm to learn the historical trades of Stress Indicator pairs trading strategy in foreign exchage rates and to predict the profitability in the future trades. The pairs of the exchange rate are filtered by choosing only the pairs which generate the positive average return per trade from Stress Indicator pairs trading strategy in the past. The capability of the ML models is to classify whether the signals from Stress Indicator pairs trading strategy is profitable or not before opening the positions. The powerful ML models, Artificial Neural network and XGBoost, are implemented in this study. Several factors which could influence the profitability such as correlation, volatility OLS beta are collected and used to train the model following the common step of ML training procedures such as features selection, Hyperparameter tuning and k-Fold cross validation to generate the capable models. Next, the performance of ANN and XGBoost is compared that which one performs better by the score matrix. The result shows that the performance of predicting the profitability is not significantly different. Both models mostly achieve 60% accuracy in In-sample data, but the accuracy in out-of-sample data is quite fluctuated. In other words, ML models are capable to classify the profitable signal from price behavior but may lack of consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXY完成签到,获得积分10
刚刚
SHAO应助Vivian采纳,获得10
刚刚
1秒前
大模型应助时尚涔雨采纳,获得10
1秒前
小羊发布了新的文献求助10
1秒前
qi驳回了Ava应助
2秒前
2秒前
知昂张发布了新的文献求助10
3秒前
3秒前
何佳完成签到,获得积分10
3秒前
李爱国应助令狐远航采纳,获得10
3秒前
顾矜应助无限雨南采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
CAOHOU应助顺心的惜蕊采纳,获得10
4秒前
ZORA发布了新的文献求助10
5秒前
zhou国兵完成签到,获得积分10
5秒前
小月Anna完成签到,获得积分10
5秒前
感动城发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
乐乐应助123采纳,获得10
7秒前
马户发布了新的文献求助10
7秒前
7秒前
明理半山完成签到,获得积分10
8秒前
娇娇完成签到,获得积分10
8秒前
风清扬发布了新的文献求助30
8秒前
做实验一点都不酷完成签到,获得积分10
8秒前
御舟观澜发布了新的文献求助30
8秒前
9秒前
善学以致用应助wxh123采纳,获得10
9秒前
爱学习的大聪明完成签到,获得积分10
9秒前
9秒前
9秒前
Eliauk完成签到,获得积分10
9秒前
10秒前
赘婿应助乘风破浪采纳,获得10
10秒前
Happyness应助MZ采纳,获得20
10秒前
令狐远航完成签到,获得积分10
12秒前
12秒前
深情安青应助北一采纳,获得10
12秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052