Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs

卷积神经网络 像素 一致性(知识库) 接收机工作特性 臼齿 人工智能 下颌管 口腔正畸科 计算机科学 数学 下颌第三磨牙 射线照相术 牙科 模式识别(心理学) 下颌磨牙 医学 放射科 统计
作者
Motoki Fukuda,Yoshiko Ariji,Yoshitaka Kise,Michihito Nozawa,Chiaki Kuwada,Takuma Funakoshi,Chisako Muramatsu,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier]
卷期号:130 (3): 336-343 被引量:53
标识
DOI:10.1016/j.oooo.2020.04.005
摘要

The aim of this study was to compare time and storage space requirements, diagnostic performance, and consistency among 3 image recognition convolutional neural networks (CNNs) in the evaluation of the relationships between the mandibular third molar and the mandibular canal on panoramic radiographs.Of 600 panoramic radiographs, 300 each were assigned to noncontact and contact groups based on the relationship between the mandibular third molar and the mandibular canal. The CNNs were trained twice by using cropped image patches with sizes of 70 × 70 pixels and 140 × 140 pixels. Time and storage space were measured for each system. Accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were determined. Intra-CNN and inter-CNN consistency values were calculated.Time and storage space requirements depended on the depth of CNN layers and number of learned parameters, respectively. The highest AUC values ranged from 0.88 to 0.93 in the CNNs created by 70 × 70 pixel patches, but there were no significant differences in diagnostic performance among any of the models with smaller patches. Intra-CNN and inter-CNN consistency values were good or very good for all CNNs.The size of the image patches should be carefully determined to ensure acquisition of high diagnostic performance and consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr完成签到,获得积分10
刚刚
1秒前
喵喵完成签到 ,获得积分10
1秒前
ding应助和谐的寄凡采纳,获得10
2秒前
哎哟很烦发布了新的文献求助10
3秒前
天天快乐应助大成子采纳,获得10
3秒前
坚定自信完成签到,获得积分10
3秒前
one完成签到 ,获得积分10
3秒前
高兴冬灵发布了新的文献求助10
4秒前
wwww完成签到,获得积分10
6秒前
7秒前
搜集达人应助qianqian采纳,获得10
7秒前
10秒前
cyw完成签到,获得积分10
10秒前
qhy123完成签到,获得积分10
10秒前
11秒前
JamesPei应助欢呼善斓采纳,获得10
13秒前
初心完成签到,获得积分10
13秒前
2428完成签到,获得积分10
13秒前
13秒前
王哪跑12发布了新的文献求助10
14秒前
zhengyuci完成签到 ,获得积分10
15秒前
和谐的迎天完成签到,获得积分10
17秒前
长安乱世完成签到 ,获得积分10
17秒前
东晓完成签到,获得积分10
18秒前
胡楠完成签到,获得积分10
18秒前
老肖应助云泰悟采纳,获得20
20秒前
22秒前
23秒前
无语的如音完成签到,获得积分10
23秒前
子车茗应助谨慕轩采纳,获得10
24秒前
25秒前
hxl完成签到 ,获得积分20
26秒前
迷路迎南完成签到 ,获得积分10
26秒前
聆琳发布了新的文献求助20
27秒前
27秒前
cen发布了新的文献求助10
28秒前
照照完成签到,获得积分10
28秒前
郑先生完成签到 ,获得积分10
29秒前
kytlnj完成签到 ,获得积分0
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011