材料科学
电催化剂
阴极
电化学
化学工程
色散(光学)
质子交换膜燃料电池
纳米技术
碳纤维
电极
催化作用
多孔性
可逆氢电极
工作电极
复合材料
化学
物理
工程类
光学
复合数
物理化学
生物化学
作者
Xiaogang Fu,Rui Gao,Gaopeng Jiang,Matthew Li,Shuang Li,Dan Luo,Yongfeng Hu,Qingxi Yuan,Wanxia Huang,Ning Zhu,Lin Yang,Zhiyu Mao,Junwei Xiong,Aiping Yu,Zhongwei Chen,Zhengyu Bai
出处
期刊:Nano Energy
[Elsevier]
日期:2021-01-14
卷期号:83: 105734-105734
被引量:45
标识
DOI:10.1016/j.nanoen.2020.105734
摘要
Metal-nitrogen-carbon (M-N-C) materials show great advantages for catalyzing the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). However, both the low density of single atomic (SA) MNx active sites and restricted mass transfer render these M-N-C based air electrodes inferior in cell performance. In this study, a new ZIF8-derived Fe-N-C catalyst/electrode design combining local chemistry tuning and primary morphology tailoring to address the above two critical issues is shown. The introduction of nitrogen-carbon defects in ZIF8 host enables a controlled atomic-scale dispersion of FeNx moieties, increasing their content in support materials. Also, the simultaneous structural arrangement of individual ZIF8 nano-grains endows the catalyst with a unique porous micro-spheric morphology. This result in an advanced 3D air electrode featuring dense SA FeNx sites and ample, multiscale macro-sized pore channels, which can significantly increase the intrinsic catalytic activity, facilitate bulk mass transport, and generate more effective triple-phase interfaces for ORR. The present catalyst/electrode design exhibits a record large peak power density of ca. 0.60 W cm−2 under practical air conditions. This approach provides a feasible way for boosting the air cathode interfacial ORR and further enlightens electrode designs for energy devices involving multiphase electrochemical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI