Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.

眼底(子宫) 视网膜病变 视力 镰状细胞性贫血 检眼镜 视网膜 黄斑病 黄斑变性 吲哚青绿
作者
Sophie Cai,Felix Parker,Muller G. Urias,Morton F. Goldberg,Gregory D. Hager,Adrienne W. Scott
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:139 (2): 206-213 被引量:5
标识
DOI:10.1001/jamaophthalmol.2020.5900
摘要

Importance Adherence to screening for vision-threatening proliferative sickle cell retinopathy is limited among patients with sickle cell hemoglobinopathy despite guidelines recommending dilated fundus examinations beginning in childhood. An automated algorithm for detecting sea fan neovascularization from ultra-widefield color fundus photographs could expand access to rapid retinal evaluations to identify patients at risk of vision loss from proliferative sickle cell retinopathy. Objective To develop a deep learning system for detecting sea fan neovascularization from ultra-widefield color fundus photographs from patients with sickle cell hemoglobinopathy. Design, Setting, and Participants In a cross-sectional study conducted at a single-institution, tertiary academic referral center, deidentified, retrospectively collected, ultra-widefield color fundus photographs from 190 adults with sickle cell hemoglobinopathy were independently graded by 2 masked retinal specialists for presence or absence of sea fan neovascularization. A third masked retinal specialist regraded images with discordant or indeterminate grades. Consensus retinal specialist reference standard grades were used to train a convolutional neural network to classify images for presence or absence of sea fan neovascularization. Participants included nondiabetic adults with sickle cell hemoglobinopathy receiving care from a Wilmer Eye Institute retinal specialist; the patients had received no previous laser or surgical treatment for sickle cell retinopathy and underwent imaging with ultra-widefield color fundus photographs between January 1, 2012, and January 30, 2019. Interventions Deidentified ultra-widefield color fundus photographs were retrospectively collected. Main Outcomes and Measures Sensitivity, specificity, and area under the receiver operating characteristic curve of the convolutional neural network for sea fan detection. Results A total of 1182 images from 190 patients were included. Of the 190 patients, 101 were women (53.2%), and the mean (SD) age at baseline was 36.2 (12.3) years; 119 patients (62.6%) had hemoglobin SS disease and 46 (24.2%) had hemoglobin SC disease. One hundred seventy-nine patients (94.2%) were of Black or African descent. Images with sea fan neovascularization were obtained in 57 patients (30.0%). The convolutional neural network had an area under the curve of 0.988 (95% CI, 0.969-0.999), with sensitivity of 97.4% (95% CI, 86.5%-99.9%) and specificity of 97.0% (95% CI, 93.5%-98.9%) for detecting sea fan neovascularization from ultra-widefield color fundus photographs. Conclusions and Relevance This study reports an automated system with high sensitivity and specificity for detecting sea fan neovascularization from ultra-widefield color fundus photographs from patients with sickle cell hemoglobinopathy, with potential applications for improving screening for vision-threatening proliferative sickle cell retinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居崽完成签到 ,获得积分10
刚刚
刚刚
快到碗里来完成签到,获得积分10
1秒前
3秒前
4秒前
5秒前
bkagyin应助南兮采纳,获得10
5秒前
xymy发布了新的文献求助10
6秒前
6秒前
Ken77关注了科研通微信公众号
9秒前
9秒前
9秒前
姜丝罐罐n发布了新的文献求助10
10秒前
11秒前
乌拉拉啦啦啦完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
闫栋发布了新的文献求助10
12秒前
拾弎完成签到 ,获得积分10
14秒前
王小茗完成签到,获得积分10
14秒前
钻石DrWang完成签到 ,获得积分10
15秒前
南兮发布了新的文献求助10
16秒前
16秒前
贾不努力完成签到,获得积分10
16秒前
17秒前
19秒前
21秒前
littletail完成签到,获得积分10
21秒前
我是老大应助Emma采纳,获得10
21秒前
保护外卖发布了新的文献求助10
23秒前
于冬雪发布了新的文献求助10
24秒前
ttt完成签到,获得积分10
24秒前
南兮完成签到,获得积分10
24秒前
希望天下0贩的0应助瓶盖采纳,获得10
27秒前
27秒前
lyj完成签到 ,获得积分10
27秒前
Albert完成签到,获得积分10
27秒前
lyk2815完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
Lucas应助Snow采纳,获得10
30秒前
咕噜噜发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425362
求助须知:如何正确求助?哪些是违规求助? 4539459
关于积分的说明 14168091
捐赠科研通 4456964
什么是DOI,文献DOI怎么找? 2444356
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740