Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.

眼底(子宫) 视网膜病变 视力 镰状细胞性贫血 检眼镜 视网膜 黄斑病 黄斑变性 吲哚青绿
作者
Sophie Cai,Felix Parker,Muller G. Urias,Morton F. Goldberg,Gregory D. Hager,Adrienne W. Scott
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:139 (2): 206-213 被引量:5
标识
DOI:10.1001/jamaophthalmol.2020.5900
摘要

Importance Adherence to screening for vision-threatening proliferative sickle cell retinopathy is limited among patients with sickle cell hemoglobinopathy despite guidelines recommending dilated fundus examinations beginning in childhood. An automated algorithm for detecting sea fan neovascularization from ultra-widefield color fundus photographs could expand access to rapid retinal evaluations to identify patients at risk of vision loss from proliferative sickle cell retinopathy. Objective To develop a deep learning system for detecting sea fan neovascularization from ultra-widefield color fundus photographs from patients with sickle cell hemoglobinopathy. Design, Setting, and Participants In a cross-sectional study conducted at a single-institution, tertiary academic referral center, deidentified, retrospectively collected, ultra-widefield color fundus photographs from 190 adults with sickle cell hemoglobinopathy were independently graded by 2 masked retinal specialists for presence or absence of sea fan neovascularization. A third masked retinal specialist regraded images with discordant or indeterminate grades. Consensus retinal specialist reference standard grades were used to train a convolutional neural network to classify images for presence or absence of sea fan neovascularization. Participants included nondiabetic adults with sickle cell hemoglobinopathy receiving care from a Wilmer Eye Institute retinal specialist; the patients had received no previous laser or surgical treatment for sickle cell retinopathy and underwent imaging with ultra-widefield color fundus photographs between January 1, 2012, and January 30, 2019. Interventions Deidentified ultra-widefield color fundus photographs were retrospectively collected. Main Outcomes and Measures Sensitivity, specificity, and area under the receiver operating characteristic curve of the convolutional neural network for sea fan detection. Results A total of 1182 images from 190 patients were included. Of the 190 patients, 101 were women (53.2%), and the mean (SD) age at baseline was 36.2 (12.3) years; 119 patients (62.6%) had hemoglobin SS disease and 46 (24.2%) had hemoglobin SC disease. One hundred seventy-nine patients (94.2%) were of Black or African descent. Images with sea fan neovascularization were obtained in 57 patients (30.0%). The convolutional neural network had an area under the curve of 0.988 (95% CI, 0.969-0.999), with sensitivity of 97.4% (95% CI, 86.5%-99.9%) and specificity of 97.0% (95% CI, 93.5%-98.9%) for detecting sea fan neovascularization from ultra-widefield color fundus photographs. Conclusions and Relevance This study reports an automated system with high sensitivity and specificity for detecting sea fan neovascularization from ultra-widefield color fundus photographs from patients with sickle cell hemoglobinopathy, with potential applications for improving screening for vision-threatening proliferative sickle cell retinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mister.WangK完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
所所应助乐意李采纳,获得10
刚刚
今后应助zzz采纳,获得10
刚刚
gxx完成签到,获得积分10
刚刚
wangjincheng应助阿言采纳,获得50
刚刚
涂楚捷发布了新的文献求助10
1秒前
大模型应助研友_闾丘枫采纳,获得10
2秒前
2秒前
2秒前
2秒前
加载中完成签到,获得积分10
3秒前
3秒前
Zx完成签到,获得积分10
3秒前
3秒前
柚子街发布了新的文献求助20
3秒前
Nature_PhD完成签到,获得积分10
4秒前
changping应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
文青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
猪鼓励完成签到,获得积分10
5秒前
干饭虫应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
柚一完成签到 ,获得积分10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
JJ完成签到 ,获得积分10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960584
求助须知:如何正确求助?哪些是违规求助? 4221179
关于积分的说明 13145684
捐赠科研通 4004827
什么是DOI,文献DOI怎么找? 2191699
邀请新用户注册赠送积分活动 1205849
关于科研通互助平台的介绍 1116956