Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.

眼底(子宫) 视网膜病变 视力 镰状细胞性贫血 检眼镜 视网膜 黄斑病 黄斑变性 吲哚青绿
作者
Sophie Cai,Felix Parker,Muller G. Urias,Morton F. Goldberg,Gregory D. Hager,Adrienne W. Scott
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:139 (2): 206-213 被引量:5
标识
DOI:10.1001/jamaophthalmol.2020.5900
摘要

Importance Adherence to screening for vision-threatening proliferative sickle cell retinopathy is limited among patients with sickle cell hemoglobinopathy despite guidelines recommending dilated fundus examinations beginning in childhood. An automated algorithm for detecting sea fan neovascularization from ultra-widefield color fundus photographs could expand access to rapid retinal evaluations to identify patients at risk of vision loss from proliferative sickle cell retinopathy. Objective To develop a deep learning system for detecting sea fan neovascularization from ultra-widefield color fundus photographs from patients with sickle cell hemoglobinopathy. Design, Setting, and Participants In a cross-sectional study conducted at a single-institution, tertiary academic referral center, deidentified, retrospectively collected, ultra-widefield color fundus photographs from 190 adults with sickle cell hemoglobinopathy were independently graded by 2 masked retinal specialists for presence or absence of sea fan neovascularization. A third masked retinal specialist regraded images with discordant or indeterminate grades. Consensus retinal specialist reference standard grades were used to train a convolutional neural network to classify images for presence or absence of sea fan neovascularization. Participants included nondiabetic adults with sickle cell hemoglobinopathy receiving care from a Wilmer Eye Institute retinal specialist; the patients had received no previous laser or surgical treatment for sickle cell retinopathy and underwent imaging with ultra-widefield color fundus photographs between January 1, 2012, and January 30, 2019. Interventions Deidentified ultra-widefield color fundus photographs were retrospectively collected. Main Outcomes and Measures Sensitivity, specificity, and area under the receiver operating characteristic curve of the convolutional neural network for sea fan detection. Results A total of 1182 images from 190 patients were included. Of the 190 patients, 101 were women (53.2%), and the mean (SD) age at baseline was 36.2 (12.3) years; 119 patients (62.6%) had hemoglobin SS disease and 46 (24.2%) had hemoglobin SC disease. One hundred seventy-nine patients (94.2%) were of Black or African descent. Images with sea fan neovascularization were obtained in 57 patients (30.0%). The convolutional neural network had an area under the curve of 0.988 (95% CI, 0.969-0.999), with sensitivity of 97.4% (95% CI, 86.5%-99.9%) and specificity of 97.0% (95% CI, 93.5%-98.9%) for detecting sea fan neovascularization from ultra-widefield color fundus photographs. Conclusions and Relevance This study reports an automated system with high sensitivity and specificity for detecting sea fan neovascularization from ultra-widefield color fundus photographs from patients with sickle cell hemoglobinopathy, with potential applications for improving screening for vision-threatening proliferative sickle cell retinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难受的难受完成签到,获得积分10
刚刚
小白完成签到,获得积分10
刚刚
Yana1311完成签到,获得积分10
1秒前
1秒前
ling关注了科研通微信公众号
3秒前
3秒前
潮汐完成签到,获得积分10
3秒前
3秒前
4秒前
我是老大应助Mifabric采纳,获得10
4秒前
sun_X发布了新的文献求助10
4秒前
4秒前
曙光发布了新的文献求助10
5秒前
41应助liusichong采纳,获得10
5秒前
汉堡包应助姚芭蕉采纳,获得10
5秒前
tiantian发布了新的文献求助10
5秒前
shao完成签到 ,获得积分10
6秒前
NKTreg完成签到,获得积分10
6秒前
NexusExplorer应助庐山烟雨采纳,获得10
7秒前
7秒前
rrrrroxie发布了新的文献求助10
7秒前
七七发布了新的文献求助10
8秒前
往前冲完成签到,获得积分10
9秒前
卡拉米完成签到,获得积分10
10秒前
10秒前
kitty发布了新的文献求助10
10秒前
罗rr完成签到 ,获得积分10
11秒前
23xyke完成签到,获得积分10
11秒前
wwewew完成签到,获得积分10
11秒前
知性的紫寒完成签到 ,获得积分10
11秒前
11秒前
wzxhhh完成签到,获得积分10
11秒前
橙子完成签到 ,获得积分10
12秒前
江宜完成签到 ,获得积分10
13秒前
14秒前
微风打了烊完成签到 ,获得积分10
14秒前
exquisite完成签到,获得积分10
15秒前
crisis发布了新的文献求助10
15秒前
Deseorz完成签到,获得积分20
15秒前
风181013发布了新的文献求助10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301