材料科学
电化学
电池(电)
纳米技术
电解质
物理化学
热力学
电极
功率(物理)
物理
化学
作者
Joonam Park,Kyu Tae Kim,Dae Yang Oh,Dahee Jin,Dohwan Kim,Yoon Seok Jung,Yong Min Lee
标识
DOI:10.1002/aenm.202001563
摘要
Abstract The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi 0.70 Co 0.15 Mn 0.15 O 2 composite electrodes employing Li 6 PS 5 Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights.
科研通智能强力驱动
Strongly Powered by AbleSci AI