Multiscale Residual Network With Mixed Depthwise Convolution for Hyperspectral Image Classification

计算机科学 残余物 卷积(计算机科学) 模式识别(心理学) 核(代数) 卷积神经网络 人工智能 高光谱成像 特征(语言学) 块(置换群论) 特征提取 水准点(测量) 上下文图像分类 算法 图像(数学) 人工神经网络 数学 语言学 哲学 几何学 大地测量学 组合数学 地理
作者
Hongmin Gao,Yao Yang,Chenming Li,Lianru Gao,Bing Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3396-3408 被引量:81
标识
DOI:10.1109/tgrs.2020.3008286
摘要

Convolutional neural networks (CNNs) are becoming increasingly popular in modern remote sensing image processing tasks and exhibit outstanding capability for hyperspectral image (HSI) classification. However, for the existing CNN-based HSI-classification methods, most of them only consider single-scale feature extraction, which may neglect some important fine information and cannot guarantee to capture optimal spatial features. Moreover, many state-of-the-art methods have a huge number of network parameters needed to be tuned, which will cause high computational cost. To address the aforementioned two issues, a novel multiscale residual network (MSRN) is proposed for HSI classification. Specifically, the proposed MSRN introduces depthwise separable convolution (DSC) and replaces the ordinary depthwise convolution in DSC with mixed depthwise convolution (MDConv), which mixes up multiple kernel sizes in a single depthwise convolution operation. The DSC with mixed depthwise convolution (MDSConv) can not only explore features at different scales from each feature map but also greatly reduce learnable parameters in the network. In addition, a multiscale residual block (MRB) is designed by replacing the convolutional layer in an ordinary residual block with the MDSConv layer. The MRB is used as the major unit of the proposed MSRN. Furthermore, to enhance further the feature representation ability, the proposed network adds a high-level shortcut connection (HSC) on the cascaded two MRBs to aggregate lower level features and higher level features. Experimental results on three benchmark HSIs demonstrate the superiority of the proposed MSRN method over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
消失的多巴胺完成签到,获得积分10
1秒前
Dogtor发布了新的文献求助10
1秒前
标致碧曼发布了新的文献求助10
1秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
核桃发布了新的文献求助20
2秒前
3秒前
wanci应助jasmine采纳,获得10
4秒前
4秒前
5秒前
奶酪战神发布了新的文献求助10
6秒前
6秒前
amor发布了新的文献求助10
7秒前
科研通AI5应助标致碧曼采纳,获得10
7秒前
简单代双完成签到,获得积分10
8秒前
七页禾发布了新的文献求助10
8秒前
wanci应助Hanqi采纳,获得10
8秒前
9秒前
11秒前
眼睛大鹤完成签到,获得积分20
11秒前
QiuYue应助nn采纳,获得100
11秒前
顾矜应助姜宇航采纳,获得10
12秒前
漂亮的雁露完成签到,获得积分10
13秒前
Chaos发布了新的文献求助10
13秒前
Jasper应助yii采纳,获得10
14秒前
16秒前
17秒前
yilu完成签到 ,获得积分10
18秒前
18秒前
tushan发布了新的文献求助30
20秒前
王博发布了新的文献求助20
20秒前
20秒前
21秒前
善学以致用应助Chaos采纳,获得10
23秒前
23秒前
缥缈傥发布了新的文献求助10
24秒前
橙子发布了新的文献求助10
26秒前
拂晓完成签到,获得积分10
26秒前
27秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208359
求助须知:如何正确求助?哪些是违规求助? 4385928
关于积分的说明 13659138
捐赠科研通 4244820
什么是DOI,文献DOI怎么找? 2328952
邀请新用户注册赠送积分活动 1326741
关于科研通互助平台的介绍 1278980