已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Young women with poor ovarian response exhibit epigenetic age acceleration based on evaluation of white blood cells using a DNA methylation-derived age prediction model

DNA甲基化 表观遗传学 甲基化 生物 男科 前瞻性队列研究 生理学 肿瘤科 医学 内科学 遗传学 DNA 基因 基因表达
作者
Brent M. Hanson,Xin Tao,Yiping Zhan,Timothy G. Jenkins,S.J. Morin,Richard T. W. Scott,Emre Seli
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:35 (11): 2579-2588 被引量:22
标识
DOI:10.1093/humrep/deaa206
摘要

Abstract STUDY QUESTION Is poor ovarian response associated with a change in predicted age based on a DNA methylation-derived age prediction model (the Horvath algorithm) in white blood cells (WBCs) or cumulus cells (CCs)? SUMMARY ANSWER In young women, poor ovarian response is associated with epigenetic age acceleration within WBC samples but is not associated with age-related changes in CC. WHAT IS KNOWN ALREADY The majority of human tissues follow predictable patterns of methylation which can be assessed throughout a person’s lifetime. DNA methylation patterns may serve as informative biomarkers of aging within various tissues. Horvath’s ‘epigenetic clock’, which is a DNA methylation-derived age prediction model, accurately predicts a subject’s true chronologic age when applied to WBC but not to CC. STUDY DESIGN, SIZE, DURATION A prospective cohort study was carried out involving 175 women undergoing ovarian stimulation between February 2017 and December 2018. Women were grouped according to a poor (≤5 oocytes retrieved) or good (>5 oocytes) response to ovarian stimulation. Those with polycystic ovary syndrome (PCOS) (n = 35) were placed in the good responder group. PARTICIPANTS/MATERIALS, SETTING, METHODS DNA methylation patterns from WBC and CC were assessed for infertile patients undergoing ovarian stimulation at a university-affiliated private practice. DNA was isolated from peripheral blood samples and CC. Bisulfite conversion was then performed and a DNA methylation array was utilized to measure DNA methylation levels throughout the genome. Likelihood ratio tests were utilized to assess the relationship between predicted age, chronologic age and ovarian response. MAIN RESULTS AND THE ROLE OF CHANCE The Horvath-predicted age for WBC samples was consistent with patients’ chronologic age. However, predicted age from analysis of CC was younger than chronologic age. In subgroup analysis of women less than 38 years of age, poor ovarian response was associated with an accelerated predicted age in WBC (P = 0.017). Poor ovarian response did not affect the Horvath-predicted age based on CC samples (P = 0.502). No alternative methylation-based calculation was identified to be predictive of age for CC. LIMITATIONS, REASONS FOR CAUTION To date, analyses of CC have failed to identify epigenetic changes that are predictive of the aging process within the ovary. Despite the poor predictive nature of both the Horvath model and the novel methylation-based age prediction model described here, it is possible that our efforts failed to identify appropriate sites which would result in a successful age-prediction model derived from the CC epigenome. Additionally, lower DNA input for CC samples compared to WBC samples was a methodological limitation. We acknowledge that a universally accepted definition of poor ovarian response is lacking. Furthermore, women with PCOS were included and therefore the group of good responders in the current study may not represent a population with entirely normal methylation profiles. WIDER IMPLICATIONS OF THE FINDINGS The process of ovarian and CC aging continues to be poorly understood. Women who demonstrate poor ovarian response to stimulation represent a common clinical challenge, so clarifying the exact biological changes that occur within the ovary over time is a worthwhile endeavor. The data from CC support a view that hormonally responsive tissues may possess distinct epigenetic aging patterns when compared with other tissue types. Future studies may be able to determine whether alternative DNA methylation sites can accurately predict chronologic age or ovarian response to stimulation from CC samples. Going forward, associations between epigenetic age acceleration and reproductive and general health consequences must also be clearly defined. STUDY FUNDING/COMPETING INTEREST(S) No external funding was obtained for the study and there are no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小醒采纳,获得10
1秒前
1秒前
2秒前
2秒前
明理的天抒完成签到 ,获得积分10
3秒前
曾浩完成签到 ,获得积分10
5秒前
Yang发布了新的文献求助20
5秒前
鸭鸭完成签到,获得积分10
5秒前
6秒前
qq158014169发布了新的文献求助10
7秒前
7秒前
9秒前
大树完成签到 ,获得积分10
14秒前
14秒前
18秒前
夏紊完成签到 ,获得积分10
19秒前
22秒前
22秒前
一只大西瓜完成签到,获得积分10
23秒前
24秒前
鸭鸭发布了新的文献求助10
25秒前
25秒前
25秒前
丽君发布了新的文献求助10
26秒前
26秒前
灵巧大地完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
Clara发布了新的文献求助10
32秒前
JerryGu发布了新的文献求助10
33秒前
ysh完成签到 ,获得积分10
35秒前
疯狂的冰珍完成签到,获得积分10
36秒前
36秒前
37秒前
万能图书馆应助You采纳,获得10
38秒前
39秒前
yizhu完成签到 ,获得积分10
39秒前
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681