Metabolomics strategy assisted by transcriptomics analysis to identify biomarkers associated with schizophrenia

代谢组学 精神分裂症(面向对象编程) 计算生物学 生物标志物 代谢组 生物标志物发现 随机森林 化学 心理学 生物化学 计算机科学 机器学习 生物 色谱法 蛋白质组学 基因 精神科
作者
Liyan Liu,Jiao Zhao,Yang Chen,Rennan Feng
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1140: 18-29 被引量:19
标识
DOI:10.1016/j.aca.2020.09.054
摘要

Metabolomics strategy was perform to identify the novel serum biomarkers linked to schizophrenia with the assistance of transcriptomics analysis. Two analytical platforms, UPLC-Q-TOF MS/MS and 1H NMR, were used to acquire the serum fingerprinting profiles from a total of 112 participants (57 healthy controls and 55 schizophrenia patients). The differential metabolites were primarily selected after statistical analyses. Meanwhile, GSE17612 dataset downloaded from GEO database was implemented WGCNA analysis to discover crucial genes and corresponding biological processes. Based on metabolomics analysis, the metabolic distinctions were explored under the aid of transcriptomics. Then using Boruta algorithm identified the biomarkers, and LASSO regression analysis and Random Forest algorithm were used to evaluate the performance of the diagnostic model constructed by biomarkers selected. A total of four metabolites (α-CEHC, neuraminic acid, glyceraldehyde and asparagine) were selected as the biomarkers to establish diagnosis model. The performance of this model showed a higher accuracy rate to distinguish schizophrenia patients from healthy controls (area under the receive operating characteristic curve, 0.992; precision recall curve, 1.000, the mean accuracy of random forest algorithm, 95.00%). A four–biomarker model (α-CEHC, neuraminic acid, glyceraldehyde and asparagine) seems to be a good model for diagnosing schizophrenia patients. It might be helpful to guide the future studies on permitting early intervention designed to prevent disease progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pearsir发布了新的文献求助10
刚刚
爱学习的婷完成签到 ,获得积分10
刚刚
matthew完成签到,获得积分10
1秒前
1秒前
1秒前
沙亮完成签到 ,获得积分10
2秒前
Hello应助吵吵robot采纳,获得10
2秒前
weige发布了新的文献求助10
2秒前
共享精神应助城南徐师傅采纳,获得10
3秒前
proton发布了新的文献求助10
3秒前
CipherSage应助自信小笼包采纳,获得10
4秒前
大模型应助matthew采纳,获得10
5秒前
眉间一把刀完成签到,获得积分10
5秒前
5秒前
maomao发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助naturehome采纳,获得10
8秒前
爆米花应助好宝宝采纳,获得10
9秒前
科研通AI2S应助Victoria采纳,获得10
9秒前
盛弟发布了新的文献求助10
10秒前
Myles发布了新的文献求助10
10秒前
研友_ZGAWYL完成签到,获得积分10
10秒前
11秒前
yookia应助烂漫的冰蓝采纳,获得10
13秒前
现代的东蒽完成签到,获得积分10
13秒前
13秒前
13秒前
上官若男应助幼汁汁鬼鬼采纳,获得10
13秒前
阿秋秋秋完成签到 ,获得积分10
14秒前
在水一方应助粥粥爱糊糊采纳,获得10
14秒前
16秒前
喻紫寒发布了新的文献求助10
16秒前
杰小瑞发布了新的文献求助30
16秒前
Gengar发布了新的文献求助10
16秒前
17秒前
张晶晶发布了新的文献求助10
18秒前
19秒前
19秒前
星辰大海应助飞星流采纳,获得10
19秒前
香蕉觅云应助诺之采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021