CNN-based augmentation strategy for spectral unmixing datasets considering spectral variability

计算机科学 光谱分析 人工智能 模式识别(心理学) 物理 光谱学 量子力学
作者
Johannes Anastasiadis,Michael Heizmann
标识
DOI:10.1117/12.2575875
摘要

Spectral unmixing is often relying on a mixing model that is only an approximation. Artificial neural networks have the advantage of not requiring model knowledge. Additional advantages in the domain of spectral unmixing are the easy handling of spectral variability and the possibility to force the sum-to-one and the non-negativity constraints. However, they need a lot of significant training data to achieve good results. To overcome this problem, mainly for classification problems, augmentation strategies are widely used to increase the size of training datasets synthetically. Spectral unmixing can be considered as a regression problem, where data augmentation is also feasible. One intuitive strategy is to generate spectra based on abundances that do not occur in the training dataset, while taking spectral variability into account. For the implementation of this approach, we use a convolutional neural network (CNN), where the input variables are extended by random values. This allows spectral variability to be taken into account. The random inputs are re-sampled for each data point in every epoch. During training the CNN learns the mixing model and the characteristic spectral variability of the training dataset. Additional spectra can be generated afterwards for any given abundances to extend the original training dataset. Because the generative CNN minimizes the error between generated spectra and the corresponding ground truth for the whole dataset during training, the variance of the spectra based on the same abundances is lower than in the training data. We have investigated two approaches for improvement. One is to increase the variance of the random input variables when generating new spectra. For the second, the estimated covariance matrices are considered by the objective function. The presented method is evaluated with real data, which were captured in our image processing laboratory. We found that the augmentation of the training dataset with the presented strategy leads to an improvement for spectral unmixing of the test dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仙峰水龙给仙峰水龙的求助进行了留言
刚刚
1秒前
轩1完成签到,获得积分20
1秒前
1秒前
2秒前
传统的雨文完成签到,获得积分10
2秒前
鹿过发布了新的文献求助10
2秒前
2秒前
tiamr完成签到,获得积分10
2秒前
卡拉米完成签到,获得积分10
2秒前
LF完成签到,获得积分10
2秒前
4秒前
机智寻雪发布了新的文献求助10
4秒前
4秒前
仲天与发布了新的文献求助10
4秒前
轩1发布了新的文献求助10
5秒前
hkym发布了新的文献求助10
5秒前
记ds完成签到,获得积分10
5秒前
5秒前
ZAL发布了新的文献求助10
6秒前
Aurelia发布了新的文献求助10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
Chloe完成签到,获得积分10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
想飞的猪完成签到,获得积分10
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
7秒前
jjj完成签到,获得积分10
7秒前
YZJing完成签到,获得积分10
7秒前
huhu发布了新的文献求助10
7秒前
水波不兴完成签到,获得积分10
7秒前
Kyrie完成签到,获得积分10
7秒前
1104完成签到,获得积分10
8秒前
8秒前
可爱的函函应助衣蝉采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080970
求助须知:如何正确求助?哪些是违规求助? 4298646
关于积分的说明 13392584
捐赠科研通 4122376
什么是DOI,文献DOI怎么找? 2257684
邀请新用户注册赠送积分活动 1262038
关于科研通互助平台的介绍 1196129