Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

稳健性(进化) 人工智能 分割 残余物 计算机科学 深度学习 比例(比率) 仰角(弹道) 样品(材料) 水准点(测量) 遥感 地图学 地理 数学 生物化学 化学 几何学 算法 色谱法 基因
作者
Ce Zhang,Peter M. Atkinson,Charles George,Zhaofei Wen,Mauricio Diazgranados,France Gerard
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:169: 280-291 被引量:64
标识
DOI:10.1016/j.isprsjprs.2020.09.025
摘要

The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到 ,获得积分10
1秒前
AJY发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助甘草采纳,获得10
3秒前
阳光雨发布了新的文献求助20
3秒前
大模型应助一一采纳,获得30
5秒前
17完成签到,获得积分10
6秒前
NexusExplorer应助内向的铁身采纳,获得10
6秒前
邢文瑞发布了新的文献求助10
8秒前
9秒前
CodeCraft应助一个靓仔采纳,获得10
12秒前
13秒前
调皮雨灵完成签到 ,获得积分10
13秒前
hao完成签到,获得积分10
13秒前
英俊的铭应助沙漠大雕采纳,获得10
14秒前
zhq发布了新的文献求助10
14秒前
尛诺完成签到,获得积分10
15秒前
16秒前
芒果发布了新的文献求助10
17秒前
mm发布了新的文献求助10
17秒前
17秒前
Willer完成签到,获得积分10
18秒前
上官若男应助aiyawy采纳,获得10
20秒前
二十五完成签到,获得积分10
20秒前
21秒前
小马甲应助WN采纳,获得10
21秒前
youlico完成签到 ,获得积分10
21秒前
23秒前
24秒前
丁丁猫发布了新的文献求助10
25秒前
八里完成签到,获得积分10
25秒前
25秒前
guard发布了新的文献求助10
27秒前
qy完成签到,获得积分10
30秒前
星辰大海应助Steven采纳,获得10
31秒前
方法发布了新的文献求助10
32秒前
Orange应助天玄一刀采纳,获得10
33秒前
彭于晏应助Billie采纳,获得10
34秒前
风清扬发布了新的文献求助10
35秒前
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579