Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

稳健性(进化) 人工智能 分割 残余物 计算机科学 深度学习 比例(比率) 仰角(弹道) 样品(材料) 水准点(测量) 遥感 地图学 地理 数学 生物化学 化学 几何学 算法 色谱法 基因
作者
Ce Zhang,Peter M. Atkinson,Charles George,Zhaofei Wen,Mauricio Diazgranados,France Gerard
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:169: 280-291 被引量:64
标识
DOI:10.1016/j.isprsjprs.2020.09.025
摘要

The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
刚刚
躞蹀发布了新的文献求助10
刚刚
1秒前
Demon应助VESong采纳,获得10
2秒前
wyn完成签到,获得积分10
2秒前
2秒前
4秒前
QQWQEQRQ发布了新的文献求助10
4秒前
浮游应助兴奋白枫采纳,获得10
5秒前
5秒前
zzz发布了新的文献求助20
5秒前
希望天下0贩的0应助小路采纳,获得10
5秒前
YKX完成签到,获得积分10
6秒前
鲤鱼月饼发布了新的文献求助10
7秒前
8R60d8完成签到,获得积分0
7秒前
懵懂的幻桃完成签到 ,获得积分10
8秒前
lancelot发布了新的文献求助10
8秒前
softquietone发布了新的文献求助10
8秒前
8秒前
乔雨蒙发布了新的文献求助10
8秒前
10秒前
拼搏向上发布了新的文献求助30
10秒前
10秒前
科研通AI6应助RiKy采纳,获得10
11秒前
WAM发布了新的文献求助10
11秒前
11秒前
zygclwl发布了新的文献求助150
12秒前
子小雨记发布了新的文献求助10
12秒前
ichi发布了新的文献求助10
12秒前
bully1024完成签到,获得积分10
13秒前
13秒前
datou发布了新的文献求助10
13秒前
蓝蓝发布了新的文献求助10
13秒前
14秒前
强强强强完成签到,获得积分10
15秒前
15秒前
15秒前
softquietone完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322