Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

稳健性(进化) 人工智能 分割 残余物 计算机科学 深度学习 比例(比率) 仰角(弹道) 样品(材料) 水准点(测量) 遥感 地图学 地理 数学 生物化学 色谱法 基因 算法 化学 几何学
作者
Ce Zhang,Peter M. Atkinson,Charles George,Zhaofei Wen,Mauricio Diazgranados,France Gerard
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:169: 280-291 被引量:64
标识
DOI:10.1016/j.isprsjprs.2020.09.025
摘要

The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豪的鸿煊完成签到,获得积分10
1秒前
Bambookiller完成签到,获得积分20
1秒前
3秒前
Tuan发布了新的文献求助10
6秒前
杨柳发布了新的文献求助10
7秒前
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
Zilch完成签到 ,获得积分10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
哭泣的鸵鸟完成签到,获得积分10
13秒前
14秒前
Qz发布了新的文献求助10
14秒前
uu完成签到,获得积分10
15秒前
理想三旬完成签到,获得积分10
16秒前
IAMXC发布了新的文献求助10
16秒前
乐观静蕾完成签到 ,获得积分10
17秒前
星闪闪发布了新的文献求助10
18秒前
杨柳完成签到,获得积分20
19秒前
19秒前
么么叽完成签到,获得积分10
19秒前
21秒前
xiaowang完成签到,获得积分10
23秒前
YuLu完成签到 ,获得积分10
24秒前
24秒前
25秒前
哎嘿应助IAMXC采纳,获得10
25秒前
huihui完成签到 ,获得积分10
27秒前
Qz完成签到,获得积分10
28秒前
28秒前
30秒前
linllll发布了新的文献求助10
30秒前
30秒前
33秒前
美嘉美完成签到,获得积分10
34秒前
34秒前
wg发布了新的文献求助10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413