Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

稳健性(进化) 人工智能 分割 残余物 计算机科学 深度学习 比例(比率) 仰角(弹道) 样品(材料) 水准点(测量) 遥感 地图学 地理 数学 生物化学 化学 几何学 算法 色谱法 基因
作者
Ce Zhang,Peter M. Atkinson,Charles George,Zhaofei Wen,Mauricio Diazgranados,France Gerard
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:169: 280-291 被引量:64
标识
DOI:10.1016/j.isprsjprs.2020.09.025
摘要

The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助LIU采纳,获得10
刚刚
1秒前
1秒前
研友_n0kqxL完成签到 ,获得积分10
1秒前
我是老大应助二货哈士奇采纳,获得10
1秒前
2秒前
须晴日发布了新的文献求助10
2秒前
共享精神应助WWW采纳,获得10
3秒前
洋了个洋洋完成签到,获得积分10
3秒前
李李完成签到,获得积分10
4秒前
小木完成签到,获得积分10
5秒前
xxx1234发布了新的文献求助10
5秒前
samar完成签到,获得积分10
5秒前
Ghh发布了新的文献求助10
5秒前
5秒前
BINGBING1230应助师大刘亦菲采纳,获得100
6秒前
fosca发布了新的文献求助10
6秒前
咕_发布了新的文献求助10
7秒前
沐翎完成签到,获得积分10
7秒前
充电宝应助谢晋采纳,获得10
7秒前
揺上天发布了新的文献求助10
7秒前
Lucas应助愉快的Jerry采纳,获得10
7秒前
8秒前
8秒前
zxy发布了新的文献求助10
8秒前
8秒前
wysky37发布了新的文献求助10
9秒前
可爱的函函应助lennon962464采纳,获得10
10秒前
思源应助yym采纳,获得10
10秒前
11秒前
顺心冬卉发布了新的文献求助10
11秒前
11秒前
12秒前
芝士铁板鸡完成签到,获得积分20
12秒前
朴素小鼠标应助lucky采纳,获得10
12秒前
WWW发布了新的文献求助10
12秒前
13秒前
abcd1234完成签到,获得积分10
13秒前
杨依楠完成签到,获得积分10
13秒前
yck1027完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699