亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

稳健性(进化) 人工智能 分割 残余物 计算机科学 深度学习 比例(比率) 仰角(弹道) 样品(材料) 水准点(测量) 遥感 地图学 地理 数学 生物化学 化学 几何学 算法 色谱法 基因
作者
Ce Zhang,Peter M. Atkinson,Charles George,Zhaofei Wen,Mauricio Diazgranados,France Gerard
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:169: 280-291 被引量:64
标识
DOI:10.1016/j.isprsjprs.2020.09.025
摘要

The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
13秒前
JamesPei应助满意的世界采纳,获得10
19秒前
45秒前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
13656479046完成签到,获得积分10
1分钟前
13656479046发布了新的文献求助30
1分钟前
贪玩的万仇完成签到 ,获得积分10
1分钟前
共享精神应助求学采纳,获得10
1分钟前
求学完成签到,获得积分10
1分钟前
syalonyui完成签到,获得积分10
2分钟前
完美世界应助明理珩采纳,获得10
2分钟前
3分钟前
明理珩发布了新的文献求助10
3分钟前
3分钟前
3分钟前
明理珩发布了新的文献求助10
3分钟前
3分钟前
明理珩发布了新的文献求助10
3分钟前
彭于晏应助明理珩采纳,获得10
3分钟前
步念发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
彩色不评完成签到,获得积分10
3分钟前
明理珩发布了新的文献求助10
3分钟前
彩色不评发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助明理珩采纳,获得80
3分钟前
传奇3应助明理珩采纳,获得30
3分钟前
3分钟前
4分钟前
超帅的开山完成签到 ,获得积分10
4分钟前
4分钟前
明理珩发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603317
求助须知:如何正确求助?哪些是违规求助? 4688370
关于积分的说明 14853492
捐赠科研通 4690132
什么是DOI,文献DOI怎么找? 2540639
邀请新用户注册赠送积分活动 1507001
关于科研通互助平台的介绍 1471609