计算机科学
旋转(数学)
公制(单位)
集合(抽象数据类型)
领域(数学分析)
适应(眼睛)
域适应
领域(数学)
人工智能
开放集
任务(项目管理)
数据挖掘
算法
模式识别(心理学)
数学
程序设计语言
光学
工程类
物理
数学分析
离散数学
分类器(UML)
系统工程
纯数学
运营管理
作者
Silvia Bucci,Mohammad Reza Loghmani,Tatiana Tommasi
标识
DOI:10.1007/978-3-030-58517-4_25
摘要
Open Set Domain Adaptation (OSDA) bridges the domain gap between a labeled source domain and an unlabeled target domain, while also rejecting target classes that are not present in the source. To avoid negative transfer, OSDA can be tackled by first separating the known/unknown target samples and then aligning known target samples with the source data. We propose a novel method to addresses both these problems using the self-supervised task of rotation recognition. Moreover, we assess the performance with a new open set metric that properly balances the contribution of recognizing the known classes and rejecting the unknown samples. Comparative experiments with existing OSDA methods on the standard Office-31 and Office-Home benchmarks show that: (i) our method outperforms its competitors, (ii) reproducibility for this field is a crucial issue to tackle, (iii) our metric provides a reliable tool to allow fair open set evaluation.
科研通智能强力驱动
Strongly Powered by AbleSci AI