Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques

粒子群优化 均方误差 元启发式 平均绝对百分比误差 抗压强度 数学 人工神经网络 统计 计算机科学 算法 人工智能 材料科学 复合材料
作者
Jian Zhou,Yingui Qiu,Danial Jahed Armaghani,Wengang Zhang,Chuanqi Li,Shuangli Zhu,Reza Tarinejad
出处
期刊:Geoscience frontiers [Elsevier]
卷期号:12 (3): 101091-101091 被引量:211
标识
DOI:10.1016/j.gsf.2020.09.020
摘要

A reliable and accurate prediction of the tunnel boring machine (TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects. This research aims to develop six hybrid models of extreme gradient boosting (XGB) which are optimized by gray wolf optimization (GWO), particle swarm optimization (PSO), social spider optimization (SSO), sine cosine algorithm (SCA), multi verse optimization (MVO) and moth flame optimization (MFO), for estimation of the TBM penetration rate (PR). To do this, a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength (BTS), rock mass weathering, the uniaxial compressive strength (UCS), revolution per minute and trust force per cutter (TFC), were set as inputs and TBM PR was selected as model output. Together with the mentioned six hybrid models, four single models i.e., artificial neural network, random forest regression, XGB and support vector regression were also built to estimate TBM PR for comparison purposes. These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of root mean square error, coefficient of determination, mean absolute percentage error, and a10-index. Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of (0.1453, and 0.1325), R2 of (0.951, and 0.951), mean absolute percentage error (4.0689, and 3.8115), and a10-index of (0.9348, and 0.9496) in training and testing phases, respectively. The developed hybrid PSO-XGB can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction. By conducting sensitivity analysis, it was found that UCS, BTS and TFC have the deepest impacts on the TBM PR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助淡定的不言采纳,获得10
1秒前
2秒前
tepqi完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
毛於菟发布了新的文献求助10
4秒前
5秒前
容二遥关注了科研通微信公众号
5秒前
布噜噜噜噜完成签到,获得积分10
5秒前
5秒前
6秒前
大模型应助eblog采纳,获得10
6秒前
Ting发布了新的文献求助20
6秒前
7秒前
端庄龙猫发布了新的文献求助30
7秒前
juaner完成签到,获得积分10
7秒前
KAI发布了新的文献求助10
8秒前
天天快乐应助二维马采纳,获得10
8秒前
8秒前
徐sir发布了新的文献求助10
8秒前
牛战士完成签到,获得积分10
9秒前
FSS完成签到,获得积分20
9秒前
YANYAN发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
cc应助Kycg采纳,获得20
10秒前
alan完成签到,获得积分10
10秒前
10秒前
muchen发布了新的文献求助10
11秒前
12秒前
JJ发布了新的文献求助10
13秒前
13秒前
小兵发布了新的文献求助10
13秒前
14秒前
lsl599应助guojingjing采纳,获得10
14秒前
淡然胡萝卜完成签到,获得积分10
14秒前
16秒前
tan_sg发布了新的文献求助10
17秒前
无极微光应助Ting采纳,获得20
17秒前
CodeCraft应助夙念采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049