Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques

粒子群优化 均方误差 元启发式 平均绝对百分比误差 抗压强度 数学 人工神经网络 统计 计算机科学 算法 人工智能 材料科学 复合材料
作者
Jian Zhou,Yingui Qiu,Danial Jahed Armaghani,Wengang Zhang,Chuanqi Li,Shuangli Zhu,Reza Tarinejad
出处
期刊:Geoscience frontiers [Elsevier]
卷期号:12 (3): 101091-101091 被引量:211
标识
DOI:10.1016/j.gsf.2020.09.020
摘要

A reliable and accurate prediction of the tunnel boring machine (TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects. This research aims to develop six hybrid models of extreme gradient boosting (XGB) which are optimized by gray wolf optimization (GWO), particle swarm optimization (PSO), social spider optimization (SSO), sine cosine algorithm (SCA), multi verse optimization (MVO) and moth flame optimization (MFO), for estimation of the TBM penetration rate (PR). To do this, a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength (BTS), rock mass weathering, the uniaxial compressive strength (UCS), revolution per minute and trust force per cutter (TFC), were set as inputs and TBM PR was selected as model output. Together with the mentioned six hybrid models, four single models i.e., artificial neural network, random forest regression, XGB and support vector regression were also built to estimate TBM PR for comparison purposes. These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of root mean square error, coefficient of determination, mean absolute percentage error, and a10-index. Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of (0.1453, and 0.1325), R2 of (0.951, and 0.951), mean absolute percentage error (4.0689, and 3.8115), and a10-index of (0.9348, and 0.9496) in training and testing phases, respectively. The developed hybrid PSO-XGB can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction. By conducting sensitivity analysis, it was found that UCS, BTS and TFC have the deepest impacts on the TBM PR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笑笑完成签到,获得积分10
2秒前
april完成签到,获得积分10
2秒前
2秒前
3秒前
橙汁儿完成签到,获得积分10
4秒前
4秒前
uriah完成签到,获得积分20
4秒前
苏藜关注了科研通微信公众号
5秒前
5秒前
66发布了新的文献求助10
6秒前
李健应助嘎嘎嘎嘎采纳,获得10
6秒前
Rollin完成签到,获得积分10
6秒前
xueqianqian发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
科研通AI2S应助劉平果采纳,获得10
7秒前
colddie完成签到,获得积分10
8秒前
www发布了新的文献求助10
8秒前
minya发布了新的文献求助10
8秒前
8秒前
在研之上完成签到,获得积分10
8秒前
South朝484发布了新的文献求助10
9秒前
karry应助carbonhan采纳,获得50
9秒前
所所应助张yang采纳,获得10
9秒前
xiaofei666应助yzm788695采纳,获得30
11秒前
打打应助你你你采纳,获得10
11秒前
12秒前
felix完成签到,获得积分20
12秒前
伶俐的道消完成签到,获得积分10
12秒前
长江完成签到,获得积分10
13秒前
meimei发布了新的文献求助10
13秒前
搜集达人应助早早采纳,获得10
13秒前
xtt发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
乐乐应助嘎嘎嘎嘎采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821