Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques

粒子群优化 均方误差 元启发式 平均绝对百分比误差 抗压强度 数学 人工神经网络 统计 计算机科学 算法 人工智能 材料科学 复合材料
作者
Jian Zhou,Yingui Qiu,Danial Jahed Armaghani,Wengang Zhang,Chuanqi Li,Shuangli Zhu,Reza Tarinejad
出处
期刊:Geoscience frontiers [Elsevier]
卷期号:12 (3): 101091-101091 被引量:211
标识
DOI:10.1016/j.gsf.2020.09.020
摘要

A reliable and accurate prediction of the tunnel boring machine (TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects. This research aims to develop six hybrid models of extreme gradient boosting (XGB) which are optimized by gray wolf optimization (GWO), particle swarm optimization (PSO), social spider optimization (SSO), sine cosine algorithm (SCA), multi verse optimization (MVO) and moth flame optimization (MFO), for estimation of the TBM penetration rate (PR). To do this, a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength (BTS), rock mass weathering, the uniaxial compressive strength (UCS), revolution per minute and trust force per cutter (TFC), were set as inputs and TBM PR was selected as model output. Together with the mentioned six hybrid models, four single models i.e., artificial neural network, random forest regression, XGB and support vector regression were also built to estimate TBM PR for comparison purposes. These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of root mean square error, coefficient of determination, mean absolute percentage error, and a10-index. Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of (0.1453, and 0.1325), R2 of (0.951, and 0.951), mean absolute percentage error (4.0689, and 3.8115), and a10-index of (0.9348, and 0.9496) in training and testing phases, respectively. The developed hybrid PSO-XGB can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction. By conducting sensitivity analysis, it was found that UCS, BTS and TFC have the deepest impacts on the TBM PR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助苏梓卿采纳,获得10
1秒前
tangyy1205完成签到,获得积分10
1秒前
Y哈哈哈完成签到,获得积分10
2秒前
小小沙完成签到,获得积分10
2秒前
淀粉肠发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
任性醉山完成签到,获得积分20
5秒前
6秒前
7秒前
沐雪完成签到,获得积分10
8秒前
一一完成签到 ,获得积分10
8秒前
Y哈哈哈发布了新的文献求助10
9秒前
核桃发布了新的文献求助10
9秒前
彭于晏应助单纯的石头采纳,获得10
9秒前
10秒前
10秒前
浮游应助paopao采纳,获得10
11秒前
wheat完成签到,获得积分10
13秒前
英姑应助清辰子丶采纳,获得10
13秒前
乐乐应助zzzzzzz采纳,获得10
14秒前
可爱的安青完成签到,获得积分10
14秒前
ran完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
核桃发布了新的文献求助10
16秒前
笑容完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
Natrual完成签到 ,获得积分10
17秒前
sansan发布了新的文献求助50
18秒前
钰宁完成签到,获得积分10
18秒前
伊萨卡完成签到 ,获得积分10
18秒前
18秒前
18秒前
18秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687