清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques

粒子群优化 均方误差 元启发式 平均绝对百分比误差 抗压强度 数学 人工神经网络 统计 计算机科学 算法 人工智能 材料科学 复合材料
作者
Jian Zhou,Yingui Qiu,Danial Jahed Armaghani,Wengang Zhang,Chuanqi Li,Shuangli Zhu,Reza Tarinejad
出处
期刊:Geoscience frontiers [Elsevier]
卷期号:12 (3): 101091-101091 被引量:211
标识
DOI:10.1016/j.gsf.2020.09.020
摘要

A reliable and accurate prediction of the tunnel boring machine (TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects. This research aims to develop six hybrid models of extreme gradient boosting (XGB) which are optimized by gray wolf optimization (GWO), particle swarm optimization (PSO), social spider optimization (SSO), sine cosine algorithm (SCA), multi verse optimization (MVO) and moth flame optimization (MFO), for estimation of the TBM penetration rate (PR). To do this, a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength (BTS), rock mass weathering, the uniaxial compressive strength (UCS), revolution per minute and trust force per cutter (TFC), were set as inputs and TBM PR was selected as model output. Together with the mentioned six hybrid models, four single models i.e., artificial neural network, random forest regression, XGB and support vector regression were also built to estimate TBM PR for comparison purposes. These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of root mean square error, coefficient of determination, mean absolute percentage error, and a10-index. Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of (0.1453, and 0.1325), R2 of (0.951, and 0.951), mean absolute percentage error (4.0689, and 3.8115), and a10-index of (0.9348, and 0.9496) in training and testing phases, respectively. The developed hybrid PSO-XGB can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction. By conducting sensitivity analysis, it was found that UCS, BTS and TFC have the deepest impacts on the TBM PR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
1分钟前
ganggang完成签到,获得积分0
1分钟前
杆杆完成签到 ,获得积分10
2分钟前
2分钟前
可爱沛蓝完成签到 ,获得积分10
2分钟前
局内人完成签到,获得积分10
2分钟前
略微妙蛙完成签到 ,获得积分10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Monicadd完成签到 ,获得积分10
3分钟前
Ivan完成签到 ,获得积分10
4分钟前
Wang完成签到 ,获得积分20
4分钟前
方白秋完成签到,获得积分0
4分钟前
科研通AI6应助噜噜大王采纳,获得10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
5分钟前
ding应助科研通管家采纳,获得10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
5分钟前
bju发布了新的文献求助10
5分钟前
bju完成签到,获得积分10
6分钟前
wang1030完成签到 ,获得积分10
6分钟前
噜噜大王发布了新的文献求助10
6分钟前
Heba完成签到,获得积分20
6分钟前
lrid完成签到 ,获得积分10
6分钟前
yxy完成签到 ,获得积分10
7分钟前
希望天下0贩的0应助Claudia采纳,获得10
7分钟前
Heba发布了新的文献求助30
7分钟前
7分钟前
7分钟前
orixero应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
Claudia发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
紫熊完成签到,获得积分10
7分钟前
8分钟前
zzhui完成签到,获得积分10
8分钟前
Vintoe完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652769
关于积分的说明 14702004
捐赠科研通 4594595
什么是DOI,文献DOI怎么找? 2521083
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463715