Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques

粒子群优化 均方误差 元启发式 平均绝对百分比误差 抗压强度 数学 人工神经网络 统计 计算机科学 算法 人工智能 材料科学 复合材料
作者
Jian Zhou,Yingui Qiu,Danial Jahed Armaghani,Wengang Zhang,Chuanqi Li,Shuangli Zhu,Reza Tarinejad
出处
期刊:Geoscience frontiers [Elsevier BV]
卷期号:12 (3): 101091-101091 被引量:211
标识
DOI:10.1016/j.gsf.2020.09.020
摘要

A reliable and accurate prediction of the tunnel boring machine (TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects. This research aims to develop six hybrid models of extreme gradient boosting (XGB) which are optimized by gray wolf optimization (GWO), particle swarm optimization (PSO), social spider optimization (SSO), sine cosine algorithm (SCA), multi verse optimization (MVO) and moth flame optimization (MFO), for estimation of the TBM penetration rate (PR). To do this, a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength (BTS), rock mass weathering, the uniaxial compressive strength (UCS), revolution per minute and trust force per cutter (TFC), were set as inputs and TBM PR was selected as model output. Together with the mentioned six hybrid models, four single models i.e., artificial neural network, random forest regression, XGB and support vector regression were also built to estimate TBM PR for comparison purposes. These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of root mean square error, coefficient of determination, mean absolute percentage error, and a10-index. Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of (0.1453, and 0.1325), R2 of (0.951, and 0.951), mean absolute percentage error (4.0689, and 3.8115), and a10-index of (0.9348, and 0.9496) in training and testing phases, respectively. The developed hybrid PSO-XGB can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction. By conducting sensitivity analysis, it was found that UCS, BTS and TFC have the deepest impacts on the TBM PR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
55215完成签到,获得积分20
刚刚
兮尔发布了新的文献求助10
1秒前
LeonPrisig发布了新的文献求助10
1秒前
Hello应助随便打采纳,获得30
1秒前
2秒前
2秒前
55215发布了新的文献求助10
3秒前
4秒前
5秒前
充电宝应助liuyaofeng采纳,获得10
5秒前
小吕小吕发布了新的文献求助10
5秒前
YLX完成签到 ,获得积分10
6秒前
怡然的向南完成签到,获得积分10
6秒前
sjckn应助无疾而终采纳,获得30
6秒前
8秒前
Yuanyuan发布了新的文献求助10
8秒前
可乐加冰发布了新的文献求助10
8秒前
现在就去看文献完成签到,获得积分10
11秒前
11秒前
棉花糖完成签到,获得积分10
11秒前
12秒前
哈1823145发布了新的文献求助10
12秒前
12秒前
领导范儿应助在捂汗采纳,获得10
13秒前
江蹇完成签到,获得积分10
15秒前
15秒前
17秒前
LJR完成签到,获得积分10
19秒前
GJL完成签到,获得积分10
20秒前
hyx9504发布了新的文献求助10
21秒前
Ning完成签到,获得积分10
21秒前
White.K发布了新的文献求助10
22秒前
22秒前
兮尔完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
上官若男应助Jennier采纳,获得10
25秒前
研友_VZG7GZ应助俭朴兔子采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281