柴油
柴油机
废物管理
发动机功率
环境科学
内燃机
汽车工程
工程类
功率(物理)
热力学
物理
作者
Seamus P. Kane,Darrick Zarling,William F. Northrop
标识
DOI:10.1115/icef2019-7241
摘要
Abstract Anhydrous ammonia produced using wind power on farms can be a renewable alternative to conventional fertilizers and to fossil fuels used in engine-powered equipment. Although it has been shown that ammonia can be used in dual fuel modes in diesel engines, its inherently low flame speed results in poor combustion efficiency and thus reduces allowable diesel fuel replacement ratios. In this work, a novel method using a thermochemical recuperation (TCR) reactor system to partially decompose ammonia into hydrogen and nitrogen over a catalyst was demonstrated in diesel engine powered tractor. In the experiments, a John Deere 6400 agricultural tractor powered by a non-EPA tier-certified 4045TL diesel engine was operated in dual-fuel mode using anhydrous ammonia as the secondary fuel. Liquid ammonia from a tank was vaporized and heated using a series of heat exchangers and partially decomposed to hydrogen gas before being fumigated into the intake manifold. The catalytic TCR reactor utilized both exhaust waste heat and unburned hydrocarbon heating value to drive the ammonia decomposition process. Engine emissions and performance data were collected across a standard 8-mode test. The engine was operated using diesel only and in dual fuel mode with up to 42% replacement of diesel with ammonia on a lower heating value basis. Engine loading was accomplished using a power takeoff (PTO) dynamometer. Measured brake thermal efficiency was improved by up to 5.0% using thermochemical recuperation, and brake specific CO2 emissions were reduced by up to 44% over diesel-only rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI