Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios

代表性浓度途径 温室气体 气候变化 排放清单 中国 环境科学 投影(关系代数) 情景分析 气候模式 环境资源管理 环境经济学 气候学 气象学 计算机科学 地理 经济 空气质量指数 生态学 考古 地质学 财务 生物 算法
作者
Dan Tong,Jing Cheng,Yang Liu,Sha Yu,Yan Liu,Chaopeng Hong,Yu Qin,Hongyan Zhao,Yixuan Zheng,Guannan Geng,Meng Li,Fei Liu,Yuxuan Zhang,Bo Zheng,Leon Clarke,Qiang Zhang
出处
期刊:Atmospheric Chemistry and Physics 卷期号:20 (9): 5729-5757 被引量:129
标识
DOI:10.5194/acp-20-5729-2020
摘要

Abstract. Future trends in air pollution and greenhouse gas (GHG) emissions for China are of great concern to the community. A set of global scenarios regarding future socio-economic and climate developments, combining shared socio-economic pathways (SSPs) with climate forcing outcomes as described by the Representative Concentration Pathways (RCPs), was created by the Intergovernmental Panel on Climate Change (IPCC). Chinese researchers have also developed various emission scenarios by considering detailed local environmental and climate policies. However, a comprehensive scenario set connecting SSP–RCP scenarios with local policies and representing dynamic emission changes under local policies is still missing. In this work, to fill this gap, we developed a dynamic projection model, the Dynamic Projection model for Emissions in China (DPEC), to explore China's future anthropogenic emission pathways. The DPEC is designed to integrate the energy system model, emission inventory model, dynamic projection model, and parameterized scheme of Chinese policies. The model contains two main modules, an energy-model-driven activity rate projection module and a sector-based emission projection module. The activity rate projection module provides the standardized and unified future energy scenarios after reorganizing and refining the outputs from the energy system model. Here we use a new China-focused version of the Global Change Assessment Model (GCAM-China) to project future energy demand and supply in China under different SSP–RCP scenarios at the provincial level. The emission projection module links a bottom-up emission inventory model, the Multi-resolution Emission Inventory for China (MEIC), to GCAM-China and accurately tracks the evolution of future combustion and production technologies and control measures under different environmental policies. We developed technology-based turnover models for several key emitting sectors (e.g. coal-fired power plants, key industries, and on-road transportation sectors), which can simulate the dynamic changes in the unit/vehicle fleet turnover process by tracking the lifespan of each unit/vehicle on an annual basis. With the integrated modelling framework, we connected five SSP scenarios (SSP1–5), five RCP scenarios (RCP8.5, 7.0, 6.0, 4.5, and 2.6), and three pollution control scenarios (business as usual, BAU; enhanced control policy, ECP; and best health effect, BHE) to produce six combined emission scenarios. With those scenarios, we presented a wide range of China's future emissions to 2050 under different development and policy pathways. We found that, with a combination of strong low-carbon policy and air pollution control policy (i.e. SSP1-26-BHE scenario), emissions of major air pollutants (i.e. SO2, NOx, PM2.5, and non-methane volatile organic compounds – NMVOCs) in China will be reduced by 34 %–66 % in 2030 and 58 %–87 % in 2050 compared to 2015. End-of-pipe control measures are more effective for reducing air pollutant emissions before 2030, while low-carbon policy will play a more important role in continuous emission reduction until 2050. In contrast, China's emissions will remain at a high level until 2050 under a reference scenario without active actions (i.e. SSP3-70-BAU). Compared to similar scenarios set from the CMIP6 (Coupled Model Intercomparison Project Phase 6), our estimates of emission ranges are much lower than the estimates from the harmonized CMIP6 emissions dataset in 2020–2030, but their emission ranges become similar in the year 2050.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹拾柒发布了新的文献求助20
刚刚
桐桐应助无情的白桃采纳,获得10
1秒前
请叫我风吹麦浪应助himsn采纳,获得40
1秒前
tzy发布了新的文献求助10
1秒前
2秒前
2秒前
今后应助专注的易文采纳,获得10
3秒前
lin完成签到,获得积分10
3秒前
执着的若灵完成签到,获得积分10
3秒前
3秒前
甜北枳完成签到,获得积分10
4秒前
SCI发布了新的文献求助10
4秒前
Frieren完成签到 ,获得积分10
4秒前
正直亦旋发布了新的文献求助10
4秒前
mjj发布了新的文献求助10
4秒前
是微微完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
起司嗯发布了新的文献求助10
6秒前
leon完成签到,获得积分10
6秒前
ccyrichard发布了新的文献求助10
6秒前
7秒前
李健应助无情山水采纳,获得10
8秒前
充电宝应助龙华之士采纳,获得10
9秒前
着急的笑旋完成签到,获得积分10
9秒前
澜生完成签到,获得积分10
10秒前
LLL完成签到 ,获得积分10
10秒前
April发布了新的文献求助10
10秒前
矜天完成签到 ,获得积分10
10秒前
cmy完成签到,获得积分10
11秒前
11秒前
笨蛋琪露诺完成签到,获得积分10
12秒前
专注的易文完成签到,获得积分10
12秒前
12秒前
刘怀蕊发布了新的文献求助10
12秒前
13秒前
13秒前
sptyzl完成签到 ,获得积分10
14秒前
彭于晏应助mnm采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762