Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification

模式识别(心理学) 人工智能 计算机科学 近似熵 支持向量机 小波 熵(时间箭头) 小波包分解 模糊逻辑 样本熵 网络数据包 小波变换 数据挖掘 计算机网络 量子力学 物理
作者
Fenglian Li,Yuzhou Fan,Xueying Zhang,Can Wang,Fengyun Hu,Wenhui Jia,Haisheng Hui
出处
期刊:Journal of Medical Systems [Springer Nature]
卷期号:44 (2) 被引量:36
标识
DOI:10.1007/s10916-019-1517-9
摘要

Electroencephalogram (EEG) analysis has been widely used in the diagnosis of stroke diseases for its low cost and noninvasive characteristics. In order to classify the EEG signals of stroke patients with cerebral infarction and cerebral hemorrhage, this paper proposes a novel EEG stroke signal classification method. This method has two highlights. The first is that a multi-feature fusion method is given by combining wavelet packet energy, fuzzy entropy and hierarchical theory. The second highlight is that a suitable classification model based on ensemble classifier is constructed for perfectly classification stroke signals. Entropy is an accessible way to measure information and uncertainty of time series. Many entropy-based methods have been developed these years. By comparing with the performances of permutation entropy, sample entropy, approximate entropy in measuring the characteristic of stroke patient's EEG signals, it can be found that fuzzy entropy has best performance in characterization stroke EEG signal. By combining hierarchical theory, wavelet packet energy and fuzzy entropy, a multi-feature fusion method is proposed. The method first calculates wavelet packet energy of EEG stroke signal, then extracts hierarchical fuzzy entropy feature by combining hierarchical theory and fuzzy entropy. The experimental results show that, compared with the fuzzy entropy feature, the classification accuracy based on the fusion feature of wavelet packet energy and hierarchical fuzzy entropy is much higher than benchmark methods. It means that the proposed multi-feature fusion method based on stroke EEG signal is an efficient measure in classifying ischemic and hemorrhagic stroke. Support vector machine (SVM), decision tree and random forest are further used as the stroke signal classification models for classifying ischemic stroke and hemorrhagic stroke. Experimental results show that, based on the proposed multi-feature fusion method, the ensemble method of random forest can get the best classification performance in accuracy among three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容丹云发布了新的文献求助10
3秒前
4秒前
5秒前
7秒前
rortis应助小鱼采纳,获得10
8秒前
夜斗完成签到,获得积分10
10秒前
11秒前
脑洞疼应助uwasa采纳,获得10
12秒前
奋斗映寒发布了新的文献求助10
13秒前
坚韧的咯咯完成签到,获得积分20
14秒前
领导范儿应助yin采纳,获得10
14秒前
小学生的练习簿完成签到,获得积分10
15秒前
18秒前
19秒前
21秒前
大模型应助judy采纳,获得10
22秒前
上岸的元气少女完成签到,获得积分20
23秒前
哈哈完成签到 ,获得积分10
23秒前
龙超人发布了新的文献求助10
25秒前
zhoujunjie发布了新的文献求助20
25秒前
小王同学完成签到,获得积分10
26秒前
sissiarno应助消潇采纳,获得30
28秒前
小王同学发布了新的文献求助10
28秒前
31秒前
33秒前
xiaohei完成签到,获得积分10
34秒前
GGBOND完成签到,获得积分10
34秒前
险胜应助科研通管家采纳,获得10
35秒前
星辰大海应助科研通管家采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
35秒前
huo应助科研通管家采纳,获得10
35秒前
上官若男应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
所所应助科研通管家采纳,获得20
35秒前
Termin完成签到,获得积分20
36秒前
37秒前
思源应助高大的河马采纳,获得10
38秒前
知性的真完成签到,获得积分10
39秒前
JamesPei应助蒋蒋采纳,获得10
41秒前
知性的真发布了新的文献求助10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469