Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification

模式识别(心理学) 人工智能 计算机科学 近似熵 支持向量机 小波 熵(时间箭头) 小波包分解 模糊逻辑 样本熵 网络数据包 小波变换 数据挖掘 计算机网络 物理 量子力学
作者
Fenglian Li,Yuzhou Fan,Xueying Zhang,Can Wang,Fengyun Hu,Wenhui Jia,Haisheng Hui
出处
期刊:Journal of Medical Systems [Springer Science+Business Media]
卷期号:44 (2) 被引量:36
标识
DOI:10.1007/s10916-019-1517-9
摘要

Electroencephalogram (EEG) analysis has been widely used in the diagnosis of stroke diseases for its low cost and noninvasive characteristics. In order to classify the EEG signals of stroke patients with cerebral infarction and cerebral hemorrhage, this paper proposes a novel EEG stroke signal classification method. This method has two highlights. The first is that a multi-feature fusion method is given by combining wavelet packet energy, fuzzy entropy and hierarchical theory. The second highlight is that a suitable classification model based on ensemble classifier is constructed for perfectly classification stroke signals. Entropy is an accessible way to measure information and uncertainty of time series. Many entropy-based methods have been developed these years. By comparing with the performances of permutation entropy, sample entropy, approximate entropy in measuring the characteristic of stroke patient's EEG signals, it can be found that fuzzy entropy has best performance in characterization stroke EEG signal. By combining hierarchical theory, wavelet packet energy and fuzzy entropy, a multi-feature fusion method is proposed. The method first calculates wavelet packet energy of EEG stroke signal, then extracts hierarchical fuzzy entropy feature by combining hierarchical theory and fuzzy entropy. The experimental results show that, compared with the fuzzy entropy feature, the classification accuracy based on the fusion feature of wavelet packet energy and hierarchical fuzzy entropy is much higher than benchmark methods. It means that the proposed multi-feature fusion method based on stroke EEG signal is an efficient measure in classifying ischemic and hemorrhagic stroke. Support vector machine (SVM), decision tree and random forest are further used as the stroke signal classification models for classifying ischemic stroke and hemorrhagic stroke. Experimental results show that, based on the proposed multi-feature fusion method, the ensemble method of random forest can get the best classification performance in accuracy among three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
echo发布了新的文献求助20
2秒前
4秒前
Victoria发布了新的文献求助10
4秒前
多情含灵发布了新的文献求助10
5秒前
慕青应助JackeyChen采纳,获得10
6秒前
小马甲应助忧虑的冰姬采纳,获得10
6秒前
6秒前
烟花应助123采纳,获得10
7秒前
cc完成签到,获得积分20
7秒前
7秒前
8秒前
AZUSA完成签到,获得积分20
9秒前
9秒前
在水一方应助猪猪院长采纳,获得10
9秒前
10秒前
朴素烧鹅发布了新的文献求助10
10秒前
superbada完成签到,获得积分10
11秒前
nanween完成签到,获得积分10
11秒前
zhaoyy发布了新的文献求助10
11秒前
11秒前
chang发布了新的文献求助10
13秒前
13秒前
13秒前
hhhi应助虚幻靖易采纳,获得10
14秒前
丘比特应助老武采纳,获得10
14秒前
15秒前
科目三应助frl采纳,获得10
15秒前
cookie完成签到,获得积分10
15秒前
畅快的天空完成签到,获得积分10
17秒前
bbanshan完成签到,获得积分10
17秒前
四时万物兮完成签到,获得积分10
18秒前
Orange应助yshhhhhhhh采纳,获得10
19秒前
隐形曼青应助哈哈哈哈哈采纳,获得10
20秒前
21秒前
Victoria发布了新的文献求助10
22秒前
22秒前
FancyShi发布了新的文献求助30
23秒前
小牧鱼完成签到,获得积分10
23秒前
黑炭球完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988646
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252059
捐赠科研通 3269632
什么是DOI,文献DOI怎么找? 1804713
邀请新用户注册赠送积分活动 881865
科研通“疑难数据库(出版商)”最低求助积分说明 809012