循环伏安法
超级电容器
X射线光电子能谱
介孔材料
介电谱
材料科学
氢氧化物
电解质
化学工程
扫描电子显微镜
电容
能量色散X射线光谱学
电化学
吸附
电极
化学
复合材料
催化作用
物理化学
有机化学
工程类
生物化学
作者
Amr Elgendy,N.M. El Basiony,F. El‐Taib Heakal,Ayman E. Elkholy
标识
DOI:10.1016/j.jpowsour.2020.228294
摘要
Developing new, cost-effective and high-specific-capacitance electroactive materials is the main focus of current energy storage research. Herein, we report on successful one-step fabrication of binder-free nickel-zinc-iron layered double hydroxide (Ni-Zn-Fe LDH) using the successive ionic layer adsorption and reaction (SILAR) method. Energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), N2 adsorption/desorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques are employed to characterize the as-prepared Ni-Zn-Fe LDH. The electrochemical performance of Ni-Zn-Fe LDH is executed by cyclic voltammetry (CV), galvanostatic charging/discharging (GCD) and electrochemical impedance spectroscopy (EIS) in 6 M KOH electrolyte. Ni-Zn-Fe LDH demonstrates high specific capacitance (1452.3 F/g) at 5 mV/s and excellent cycling stability. This can be attributed to its high specific surface area (119.79 m2/g) and mesoporous structure with a pore size of ~3.69 nm, that allow for the electrolyte ions to get in contact with the electroactive material surface to a great extent. High energy density (14.9 Wh/kg), high power density (1077.6 W/kg) and outstanding cycling stability (~95% capacitance retention after 1000 GCD cycles at 1.5 A/g) are obtained from the assembled asymmetric device (AC // Ni-Zn-Fe LDH). All these features make the proposed Ni-Zn-Fe LDH material a promising candidate for supercapacitor applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI