电催化剂
腐蚀
宝藏
材料科学
氧气
析氧
化学工程
冶金
废物管理
电化学
化学
电极
有机化学
工程类
物理化学
神学
哲学
作者
Xupo Liu,Mingxing Gong,Dongdong Xiao,Shaofeng Deng,Jianing Liang,Tonghui Zhao,Yun Lu,Tao Shen,Jian Zhang,Deli Wang
出处
期刊:Small
[Wiley]
日期:2020-05-17
卷期号:16 (24)
被引量:131
标识
DOI:10.1002/smll.202000663
摘要
Iron corrosion causes a great damage to the economy due to the function attenuation of iron-based devices. However, the corrosion products can be used as active materials for some electrocatalytic reactions, such as oxygen evolution reaction (OER). Herein, the oxygen corrosion on Fe foams (FF) to synthesize effective self-supporting electrocatalysts for OER, leading to "turning waste into treasure," is regulated. A dual chloride aqueous system of "NaCl-NiCl2 " is employed to tailor the structures and OER properties of corrosion layers. The corrosion behaviors identify that Cl- anions serve as accelerators for oxygen corrosion, while Ni2+ cations guarantee the uniform growth of corrosion layers owing to the appeared chemical plating. The synergistic effect of "NaCl-NiCl2 " generates one of the highest OER activities that only an overpotential of 212 mV is required to achieve 100 mA cm-2 in 1.0 m KOH solution. The as-prepared catalyst also exhibits excellent durability over 168 h (one week) at 100 mA cm-2 and promising application for overall water splitting. Specially, a large self-supporting electrode (9 × 10 cm2 ) is successfully synthesized via this cost-effective and easily scale-up approach. By combining with corrosion science, this work provides a significant stepping stone in exploring high-performance OER electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI