Antidepressant treatment strategy with an early onset of action improves the clinical outcome in patients with major depressive disorder and high anxiety: a multicenter and 6-week follow-up study

焦虑 重性抑郁障碍 抗抑郁药 医学 萧条(经济学) 精神科 知情同意 析因分析 临床试验 心理学 内科学 心情 替代医学 病理 经济 宏观经济学
作者
Xuemei Liao,Yun‐Ai Su,Ying Wang,Xin Yu,Tianmei Si
出处
期刊:Chinese Medical Journal [Ovid Technologies (Wolters Kluwer)]
卷期号: (6): 726-728 被引量:5
标识
DOI:10.1097/cm9.0000000000000673
摘要

Major depressive disorder (MDD) is a prevalent, often chronic, and highly disabling multidimensional psychiatric illness.[1] Moreover, co-occurring anxiety symptoms are extremely common among patients with MDD; up to 90% of patients present with anxiety symptoms.[2] Notably, high levels of anxiety symptoms may predict worse clinical outcomes because of poor response to pharmacotherapy for MDD.[3] So use of augmentation or combination strategies during early course of treatment could be necessary, but ensuring the accurate and timely change is difficult because of the lack of consensus to assess the early improvement of initial treatment. To date, replicated evidence indicates that the lack of early improvement (eg, <20% reduction in a depression scale score) in 2 weeks can be an accurate predictor to identify eventual non-responders.[4] This study aimed to evaluate the early onset of antidepressant action and clinical outcomes in patients with MDD and high anxiety, and to explore the potential influencing factors of early onset improvement. This study was a post-hoc analysis of a multicenter, randomized, parallel-controlled, open-label study.[5] The study protocol was approved by the independent ethics committee in each research center or the ethics committee of the Peking University Sixth Hospital. All the participants provided written informed consent before the study. A total of 245 patients (aged 18–65 years) were diagnosed with MDD based on the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision criteria. They were required to have a current major depressive episode with a total score ≥17 on the Hamilton Depression Rating Scale 17-item (HAMD-17), and also have a high level of anxiety symptoms with a total score ≥14 on the Hamilton Anxiety Rating Scale (HAMA) at the baseline visit. All eligible patients were assigned to receive at least 6 weeks of follow-up and antidepressant treatment, including selective serotonin reuptake inhibitors (SSRIs) alone or coupled with a flexible dose of tandospirone.[5] The involved SSRIs were fluoxetine, paroxetine, fluvoxamine, sertraline, citalopram, and escitalopram. Notably, not all the patients were naive to any antidepressants at the first visit, but they were not treated with adequate dose of antidepressants for more than 2 weeks in the current episode. Treatment with several sedative-hypnotic drugs for short-term use was permitted as needed for sleep disorders, including zopiclone, lorazepam, alprazolam, clonazepam, midazolam, zaleplon, and zolpidem. The efficacy measurements were evaluated at different visit points, including week 2, week 4, and week 6. The evaluation tools included HAMD-17 total scores, HAMA total scores, and Clinical Global Impressions Severity Subscale (CGI-S) score. Moreover, short form-12 (SF-12) physical component score (PCS) and mental component score (MCS) were used to assess the quality of life of these patients. Remission assessment was defined as showing an HAMD-17 total score ≤7 points. At the end of week 2, 240 patients remained and were divided into two groups based on the reduction rate of HAMD-17 total score compared with the baseline: early-improvement group (≥20% decrease in HAMD-17 total score, n = 134) and early-unimproved group (<20% decrease in HAMD-17 total score, n = 106). Finally, 230 patients completed the 6-week follow-up, including 128 patients with early-improvement and 102 early-unimproved patients. The comparison of the remission rate between the two groups was conducted in week 6. In addition, the potential influencing factors of early improvement in week 2 were also analyzed. The data analysis was based on the full analysis set. The data collected at each visit point were analyzed using the mixed-effects repeated-measures model. The influencing factors of early improvement were analyzed by logistic regression. All the statistical analyses were performed using the Statistical Package for the Social Sciences for Windows, version 24.0 (SPSS, Inc., Chicago, IL, USA). P < 0.05 was considered statistically significant. The baseline demographic data were similar between the two groups (P > 0.05), except for the number of patients taking sedative-hypnotic drugs. The patients in the early-improvement group showed more combination of sedative-hypnotic drugs compared with the patients in the early-unimproved group (12.7% [17/134] vs. 1.9% [2/106], χ2 = 11.979, P = 0.002). At baseline, the total scores of HAMD-17 (24.76 vs. 23.11, P = 0.007) and CGI-S (4.89 vs. 4.54, P = 0.002) in the early-improvement group were significantly higher, and SF-12 (PCS) (38.77 vs. 41.65, P = 0.022) and SF-12 (MCS) (26.01 vs. 28.05, P = 0.035) scores were significantly lower than those in the early-unimproved group. The statistical superiority was observed for the early-improvement group in the HAMD-17 total score [Figure 1A], HAMA total score [Figure 1B], and CGI-S total score [Figure 1C] during weeks 2 to 6, SF-12 (PCS) score in week 6 [Figure 1D] and SF-12 (MCS) score between weeks 2 and 6 [Figure 1E].Figure 1: Least squares mean of HAMD-17 total score (A), HAMA total score (B), CGI-S total score (C), SF-12 (PCS) score (D), and SF-12 (MCS) score (E) at each visit in the early-improvement group and the early-unimproved group receiving antidepressant treatment. ∗ P < 0.01; † P < 0.05. CGI-S: Clinical global impressions severity; HAMA: Hamilton anxiety rating scale; HAMD-17: Hamilton depression rating scale 17-item; SF-12 (MCS): 12-Item short form survey (mental component score); SF-12 (PCS): 12-Item short form survey (physical component score).Notably, the patients in the early-improvement group showed greater improvements in several important rating scales compared with the patients in the early-unimproved group at the endpoint visit. The least-squares (LS) mean in the HAMD-17 total score was statistically lower for the early-improvement group than the early-unimproved group (6.48 vs. 12.17, P < 0.001). The LS means in both HAMA total score (7.19 vs. 11.8, P < 0.001) and CGI-S total score (1.91 vs. 2.65, P < 0.001) were also significantly lower in the early-improvement group than in the early-unimproved patients. The greater improvements were observed in both SF-12 (PCS) score (48.26 vs. 45.36, P = 0.014) and SF-12 (MCS) score (44.21 vs. 36.36, P < 0.001) for the early-improvement group than for the early-unimproved group. In addition, the early-improvement group showed a significant difference in the remission rate in week 6 compared with the early-unimproved group (62.8% [80/128] vs. 29.4% [30/102], χ2 = 25.424, P < 0.001). The logistic regression model was used to analyze the influencing factors for early improvement. The dependent variable was a dichotomous variable, which was an early improvement vs. early un-improvement. The independent variables included in the model were treatment (SSRIs + tandospirone vs. SSRIs), combination with sedative-hypnotic drugs, age, body weight, sex, age of onset of psychiatric symptoms, course of recent episode, and baseline total scores of HAMD-17, HAMA, CGI-S, SF-12 (MCS), and SF-12 (PCS) scales. Of these variables, the combination with sedative-hypnotic drugs was statistically significant (odds ratio: 7.556, 95% confidence interval: 1.607–35.530, P = 0.010), indicating that the combination with sedative-hypnotic therapy was more helpful for early improvement. The present study successfully replicated the findings of previous major studies, which demonstrated a significant relationship between early improvement within the first weeks of antidepressant treatment and later remission rate in patients with MDD.[6] Specifically, a similar association was found in patients with MDD and high level of anxiety symptoms. The results showed that patients who achieved the early improvement of the depressive symptoms in week 2 after antidepressant treatment also obtained the sustained relief of symptoms and improved quality of life during weeks 2 to 6. Further, these patients with early improvement displayed more significant clinical remission of depressive symptoms in week 6. According to the logistic regression analysis, the results revealed that the combination with sedative-hypnotic drugs was a significant predictor of early improvement in week 2. Benzodiazepines are primarily used as a sedative-hypnotics in patients with MDD to alleviate anxiety symptom and insomnia, and they might contribute to the response to antidepressants in the first two weeks because they produce a faster onset of effect on anxiety symptoms than antidepressants alone. Thus, it may be justifiable to combine benzodiazepines as a short-term treatment in patients with MDD and high-level anxiety. In summary, the early improvement within the first 2 weeks of receiving antidepressant treatment is a powerful predictor of outcome in patients with MDD and a high level of anxiety. Notably, the short-term combination with sedative-hypnotic drugs within the first few weeks may augment the early-onset improvement of antidepressant therapy. Declaration of patient consent The authors certify that they have obtained all appropriate patient consent forms. In the form, the patients have given their consent for their clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed. Funding This study was sponsored by Sumitomo Dainippon Pharma Co., Ltd. (Suzhou, China. No.SPC-SED1102). The analysis and writing were partially supported by the National Key Technology R&D Program (No. 2015BAI13B01). The funders had no role in the study design, collection analysis, conduct of the study or in the writing and preparation of the manuscript or the decision to publish. Conflicts of interest None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
包容的水彤关注了科研通微信公众号
1秒前
1秒前
1秒前
受伤秋烟完成签到,获得积分10
2秒前
自然的芷蝶应助JiaYY采纳,获得20
2秒前
2秒前
lizhen完成签到,获得积分10
2秒前
烂漫的新竹完成签到,获得积分10
2秒前
香蕉觅云应助阔达的扬采纳,获得10
2秒前
dog发布了新的文献求助10
2秒前
犹豫发布了新的文献求助10
2秒前
小杭76发布了新的文献求助10
2秒前
2秒前
柚子发布了新的文献求助10
3秒前
健壮荧完成签到,获得积分10
3秒前
小嘀嗒发布了新的文献求助10
3秒前
一只啾咪完成签到,获得积分10
3秒前
亭语完成签到 ,获得积分0
3秒前
3秒前
科研通AI2S应助牛牛采纳,获得10
4秒前
天行马发布了新的文献求助10
4秒前
宝小静发布了新的文献求助10
4秒前
852应助石问丝采纳,获得10
4秒前
johnzsin发布了新的文献求助10
4秒前
li关闭了li文献求助
5秒前
凉虾完成签到,获得积分10
5秒前
孔雀翎发布了新的文献求助10
5秒前
吴灵发布了新的文献求助10
5秒前
赵珂完成签到,获得积分10
5秒前
所所应助三十三采纳,获得10
6秒前
CodeCraft应助kersville采纳,获得10
7秒前
231完成签到 ,获得积分10
7秒前
彩色鸿涛完成签到,获得积分10
7秒前
7秒前
玥越发布了新的文献求助10
7秒前
7秒前
8秒前
上官若男应助落后立果采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066