A general deep learning framework for history-dependent response prediction based on UA-Seq2Seq model

计算机科学 参数统计 深度学习 序列(生物学) 非线性系统 人工智能 规范化(社会学) 公制(单位) 参数化模型 算法 数学 物理 工程类 遗传学 量子力学 生物 统计 运营管理 人类学 社会学
作者
Chen Wang,Li‐Yan Xu,Jian‐Sheng Fan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:372: 113357-113357 被引量:47
标识
DOI:10.1016/j.cma.2020.113357
摘要

A general deep learning framework based on the Unrolled Attention Sequence-to-Sequence (UA-Seq2Seq) model is developed to address the history-dependent response prediction problem. First, the particular traits of the history-dependent response prediction problem are analyzed, which motivate the incorporation of the unrolled gated recurrent unit (GRU) structure and the attention mechanism into the classical Seq2Seq model in natural language processing. In the UA-Seq2Seq model, the Seq2Seq skeleton frees the restrictions on both the input and target mechanical variables. Meanwhile, the novel unrolled GRU structure conforms to the general process of mechanical simulation and manages to establish the gated links with the historical states, which is further boosted by the powerful attention mechanism dedicated to retrieving the super-long-term memory information. To quickly and informatively validate the UA-Seq2Seq model, a numerical experiment based on the cyclic stress–strain response of low-yield-point steel is conducted, whose constitutive behavior depends highly on the loading history. All the training and testing configurations in the numerical experiment are specified, including a novel data normalization method – named nonlinear reference-value scaling – tailored for mechanical variables. The results verify the effectiveness of the UA-Seq2Seq model to reproduce the history-dependent hysteresis loops and confirm its capability to capture the long-term memory effect. Furthermore, a parametric analysis is carried out to demonstrate the necessity of the unrolled structure and the attention mechanism as well as the advantage of selecting the L1 loss metric, following which a qualitative mechanical interpretation of the UA-Seq2Seq model is provided to aid in the intuitive comprehension. Finally, three feasible applications and extensions of the developed framework are introduced conceptually: integration with finite element analysis, outline analysis, and transfer learning to other similar tasks. Therefore, the proposed deep learning framework is able to cover a wide range of scenarios concerning the mechanical history-dependent response simulation in practice, which facilitates its universal employment in the academic research and engineering design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yqhide发布了新的文献求助10
1秒前
1秒前
1秒前
朴素的啤酒完成签到,获得积分10
2秒前
Li发布了新的文献求助10
2秒前
天天快乐应助yangfan采纳,获得10
2秒前
王崇然发布了新的文献求助10
2秒前
Weisl完成签到,获得积分20
2秒前
失眠的桐完成签到,获得积分10
2秒前
orixero应助欢喜的毛豆采纳,获得10
3秒前
zero发布了新的文献求助10
3秒前
CipherSage应助lyna_可爱lllhh采纳,获得10
3秒前
Chosen_1完成签到,获得积分10
4秒前
浮游应助易玟采纳,获得10
4秒前
Sheldon应助易玟采纳,获得10
4秒前
4秒前
子车凡发布了新的文献求助10
4秒前
5秒前
上官若男应助默默采纳,获得10
5秒前
肥肥的呢完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
xuan发布了新的文献求助10
6秒前
领导范儿应助小飞采纳,获得10
6秒前
科研通AI6应助panpan采纳,获得10
6秒前
kz完成签到,获得积分10
7秒前
xiaowen完成签到,获得积分10
7秒前
7秒前
小酷孩发布了新的文献求助10
7秒前
8秒前
8秒前
seawoods完成签到,获得积分10
8秒前
Weisl发布了新的文献求助10
8秒前
赘婿应助YBR采纳,获得10
8秒前
9秒前
wzhang完成签到,获得积分10
9秒前
嗯对完成签到,获得积分10
10秒前
w8816完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917