A general deep learning framework for history-dependent response prediction based on UA-Seq2Seq model

计算机科学 参数统计 深度学习 序列(生物学) 非线性系统 人工智能 规范化(社会学) 公制(单位) 参数化模型 算法 数学 物理 工程类 遗传学 量子力学 生物 统计 运营管理 人类学 社会学
作者
Chen Wang,Li‐Yan Xu,Jian‐Sheng Fan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:372: 113357-113357 被引量:47
标识
DOI:10.1016/j.cma.2020.113357
摘要

A general deep learning framework based on the Unrolled Attention Sequence-to-Sequence (UA-Seq2Seq) model is developed to address the history-dependent response prediction problem. First, the particular traits of the history-dependent response prediction problem are analyzed, which motivate the incorporation of the unrolled gated recurrent unit (GRU) structure and the attention mechanism into the classical Seq2Seq model in natural language processing. In the UA-Seq2Seq model, the Seq2Seq skeleton frees the restrictions on both the input and target mechanical variables. Meanwhile, the novel unrolled GRU structure conforms to the general process of mechanical simulation and manages to establish the gated links with the historical states, which is further boosted by the powerful attention mechanism dedicated to retrieving the super-long-term memory information. To quickly and informatively validate the UA-Seq2Seq model, a numerical experiment based on the cyclic stress–strain response of low-yield-point steel is conducted, whose constitutive behavior depends highly on the loading history. All the training and testing configurations in the numerical experiment are specified, including a novel data normalization method – named nonlinear reference-value scaling – tailored for mechanical variables. The results verify the effectiveness of the UA-Seq2Seq model to reproduce the history-dependent hysteresis loops and confirm its capability to capture the long-term memory effect. Furthermore, a parametric analysis is carried out to demonstrate the necessity of the unrolled structure and the attention mechanism as well as the advantage of selecting the L1 loss metric, following which a qualitative mechanical interpretation of the UA-Seq2Seq model is provided to aid in the intuitive comprehension. Finally, three feasible applications and extensions of the developed framework are introduced conceptually: integration with finite element analysis, outline analysis, and transfer learning to other similar tasks. Therefore, the proposed deep learning framework is able to cover a wide range of scenarios concerning the mechanical history-dependent response simulation in practice, which facilitates its universal employment in the academic research and engineering design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
八八九九九1完成签到,获得积分10
1秒前
mbf关闭了mbf文献求助
2秒前
善学以致用应助谨慎太兰采纳,获得10
2秒前
3秒前
xu发布了新的文献求助10
4秒前
5秒前
夏炖鱿鱼发布了新的文献求助10
6秒前
6秒前
MJyhy发布了新的文献求助10
7秒前
花花应助sekidesu采纳,获得10
7秒前
彭于晏应助欢呼芷雪采纳,获得10
7秒前
7秒前
的微博发布了新的文献求助10
10秒前
10秒前
英俊的铭应助王炎欣采纳,获得10
10秒前
糖糖糖唐完成签到,获得积分10
12秒前
艾欧比发布了新的文献求助10
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
zdh发布了新的文献求助20
15秒前
Hello应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
落落发布了新的文献求助10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
16秒前
wwnd完成签到,获得积分10
16秒前
llj发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
谨慎太兰完成签到,获得积分20
18秒前
MJyhy完成签到,获得积分10
19秒前
20秒前
hao完成签到,获得积分10
20秒前
20秒前
木木完成签到,获得积分10
21秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829