A general deep learning framework for history-dependent response prediction based on UA-Seq2Seq model

计算机科学 参数统计 深度学习 序列(生物学) 非线性系统 人工智能 规范化(社会学) 公制(单位) 参数化模型 算法 数学 物理 工程类 遗传学 量子力学 生物 统计 运营管理 人类学 社会学
作者
Chen Wang,Li‐Yan Xu,Jian‐Sheng Fan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:372: 113357-113357 被引量:47
标识
DOI:10.1016/j.cma.2020.113357
摘要

A general deep learning framework based on the Unrolled Attention Sequence-to-Sequence (UA-Seq2Seq) model is developed to address the history-dependent response prediction problem. First, the particular traits of the history-dependent response prediction problem are analyzed, which motivate the incorporation of the unrolled gated recurrent unit (GRU) structure and the attention mechanism into the classical Seq2Seq model in natural language processing. In the UA-Seq2Seq model, the Seq2Seq skeleton frees the restrictions on both the input and target mechanical variables. Meanwhile, the novel unrolled GRU structure conforms to the general process of mechanical simulation and manages to establish the gated links with the historical states, which is further boosted by the powerful attention mechanism dedicated to retrieving the super-long-term memory information. To quickly and informatively validate the UA-Seq2Seq model, a numerical experiment based on the cyclic stress–strain response of low-yield-point steel is conducted, whose constitutive behavior depends highly on the loading history. All the training and testing configurations in the numerical experiment are specified, including a novel data normalization method – named nonlinear reference-value scaling – tailored for mechanical variables. The results verify the effectiveness of the UA-Seq2Seq model to reproduce the history-dependent hysteresis loops and confirm its capability to capture the long-term memory effect. Furthermore, a parametric analysis is carried out to demonstrate the necessity of the unrolled structure and the attention mechanism as well as the advantage of selecting the L1 loss metric, following which a qualitative mechanical interpretation of the UA-Seq2Seq model is provided to aid in the intuitive comprehension. Finally, three feasible applications and extensions of the developed framework are introduced conceptually: integration with finite element analysis, outline analysis, and transfer learning to other similar tasks. Therefore, the proposed deep learning framework is able to cover a wide range of scenarios concerning the mechanical history-dependent response simulation in practice, which facilitates its universal employment in the academic research and engineering design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鹏虫虫完成签到 ,获得积分10
2秒前
3秒前
可爱的函函应助牛牛采纳,获得10
5秒前
能干的茗发布了新的文献求助10
6秒前
欧阳正义发布了新的文献求助10
7秒前
7秒前
清脆南蕾发布了新的文献求助10
8秒前
852应助tomorrow9采纳,获得10
9秒前
凉薄少年应助乐观碧彤采纳,获得10
9秒前
李爱国应助夔kk采纳,获得10
10秒前
凉薄少年应助刘先生采纳,获得10
11秒前
xxttt完成签到,获得积分10
17秒前
19秒前
xunxunmimi完成签到,获得积分10
20秒前
天天快乐应助明明明采纳,获得30
20秒前
啦啦啦完成签到,获得积分10
21秒前
谢逸轩发布了新的文献求助10
22秒前
英姑应助行路人采纳,获得20
23秒前
jiangwei完成签到 ,获得积分10
23秒前
完美世界应助涵泽采纳,获得10
25秒前
28秒前
纯真的觅露完成签到,获得积分20
28秒前
sjdghgdhs发布了新的文献求助10
29秒前
Tony12完成签到,获得积分10
29秒前
星星轨迹发布了新的文献求助10
32秒前
谢逸轩完成签到,获得积分10
32秒前
32秒前
艺涵发布了新的文献求助10
33秒前
SciGPT应助叶小文采纳,获得10
33秒前
cyn0762发布了新的文献求助10
34秒前
35秒前
spyspy完成签到,获得积分10
35秒前
林佳一完成签到,获得积分10
37秒前
城南烤地瓜完成签到 ,获得积分10
37秒前
38秒前
等等完成签到 ,获得积分10
40秒前
wanci应助mzc采纳,获得10
40秒前
一条咸鱼发布了新的文献求助10
40秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498