凝聚
等温滴定量热法
化学
化学工程
姜黄素
粒径
肺表面活性物质
色谱法
材料科学
物理化学
生物化学
工程类
作者
Chun-Ru Su,Yuyan Huang,Qihui Chen,Meng-Fan Li,Hao Wang,Guoyan Li,Yang Yuan
标识
DOI:10.1016/j.lwt.2020.110591
摘要
This paper investigated the formation of a novel complex coacervate between gliadin (G) and sodium alginate (SA) as well as its relationship with the encapsulation and controlled release properties by loading curcumin (Cur). G-SA coacervates (GSAC) were fabricated using the anti-solvent method to form gliadin nanoparticles (GNPs) and then electrostatic deposition with SA to form coacervates. Based on the turbidimetric analysis and ζ-potential results, coacervates were formed at a wide range of pH (1.0–7.0) through electrostatic interaction in the gliadin-SA system. The gliadin-SA interaction was spontaneous exothermic process shown by the isothermal titration calorimetry. The spherical particles of curcumin-loading G-SA coacervates (GSAC-Cur) with well-homogeneity and great-dispersion as well as particle aggregation were observed on SEM. At coacervated pHs, GSAC-Cur showed particle size from 433.55 to 1496.50 nm, PDI around 0.28, ζ-potential from −1.9 to −50.9 mV and encapsulation efficiency from 61.29% to 81.01%. Controlled release profiles confirmed that G-SA coacervates reduced the released speed of curcumin in the release process. In summary, we concluded that the properties of GSAC-Cur corresponding to the embedding and controlled release could be better by forming coacervates via pH-induced.
科研通智能强力驱动
Strongly Powered by AbleSci AI