Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction

计算机科学 协方差 波束赋形 估计员 稳健性(进化) 基质(化学分析) 控制理论(社会学)
作者
Sicong Sun,Zhongfu Ye
出处
期刊:Signal Processing [Elsevier]
卷期号:182: 107939- 被引量:6
标识
DOI:10.1016/j.sigpro.2020.107939
摘要

Abstract Robustness is an important factor in adaptive beamforming because various mismatches that exist in reality will lead to considerable performance degradation. In this paper, a robust adaptive beamforming (RAB) algorithm is proposed based on a novel method for estimating the steering vectors (SVs). The interference-plus-noise covariance matrix (INCM) is then reconstructed by the SVs and their corresponding power estimates. As we know, the Capon power spectrum is actually a function of the SV defined in a high-dimensional domain, in which the actual SVs correspond to the highest peaks. The nominal SVs may lead to relatively lower power amplitude points around the peaks when mismatches exist, and these peaks are located in the directions of gradient vectors at the lower power points obtained by the nominal SVs. Therefore, to obtain the actual SVs, we first construct a subspace for each nominal SV in a small neighborhood of angles. Then we get the gradient vector, which is orthogonal to the corresponding nominal SV neighborhood, using a subspace-based method. Finally, we search along the gradient vector to obtain the adjusted SV that generates the highest Capon power amplitude. The interference covariance matrix (ICM) is reconstructed by the adjusted interference SVs and corresponding Capon power amplitudes. The actual SV of the signal of interest (SOI) is estimated as the adjusted SV of the SOI. Simulation results demonstrate that the proposed method is robust against various types of mismatch and is superior to other existing reconstruction-based beamforming algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七应助Rita采纳,获得10
1秒前
ZRDJ发布了新的文献求助10
1秒前
2秒前
三飘发布了新的文献求助10
2秒前
李健的小迷弟应助shushu采纳,获得10
2秒前
CipherSage应助fuchao采纳,获得10
2秒前
百结完成签到,获得积分10
3秒前
科研小趴菜完成签到,获得积分10
4秒前
情怀应助飞舞的青鱼采纳,获得10
5秒前
6秒前
thisnn完成签到,获得积分10
6秒前
不敢装睡发布了新的文献求助10
7秒前
www完成签到 ,获得积分10
7秒前
小兵完成签到,获得积分10
8秒前
Akim应助义气尔安采纳,获得10
8秒前
鹿飞松完成签到,获得积分10
9秒前
10秒前
九思发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
杨启蒙发布了新的文献求助10
11秒前
a燃完成签到,获得积分10
12秒前
cc发布了新的文献求助10
12秒前
13秒前
林贞宝宝发布了新的文献求助30
13秒前
14秒前
15秒前
16秒前
大力发布了新的文献求助10
16秒前
Curry完成签到 ,获得积分10
16秒前
酷波er应助雪白的世倌采纳,获得30
16秒前
fuchao发布了新的文献求助10
17秒前
cocolu应助ZRDJ采纳,获得10
17秒前
17秒前
shushu完成签到,获得积分10
17秒前
江北完成签到,获得积分10
18秒前
猪猪hero发布了新的文献求助10
19秒前
19秒前
SFL发布了新的文献求助10
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470653
求助须知:如何正确求助?哪些是违规求助? 3063626
关于积分的说明 9084762
捐赠科研通 2754142
什么是DOI,文献DOI怎么找? 1511256
邀请新用户注册赠送积分活动 698359
科研通“疑难数据库(出版商)”最低求助积分说明 698253