PyTorch Distributed: Experiences on Accelerating Data Parallel Training

计算机科学 培训(气象学) 并行计算 人工智能 数据科学 数学教育 心理学 地理 气象学
作者
Li Shen,Yanli Zhao,Rohan Varma,Omkar Salpekar,Pieter Noordhuis,Teng Li,Adam Paszke,Jeff Smith,Brian Vaughan,Pritam Damania,Soumith Chintala
出处
期刊:Cornell University - arXiv 被引量:79
标识
DOI:10.48550/arxiv.2006.15704
摘要

This paper presents the design, implementation, and evaluation of the PyTorch distributed data parallel module. PyTorch is a widely-adopted scientific computing package used in deep learning research and applications. Recent advances in deep learning argue for the value of large datasets and large models, which necessitates the ability to scale out model training to more computational resources. Data parallelism has emerged as a popular solution for distributed training thanks to its straightforward principle and broad applicability. In general, the technique of distributed data parallelism replicates the model on every computational resource to generate gradients independently and then communicates those gradients at each iteration to keep model replicas consistent. Despite the conceptual simplicity of the technique, the subtle dependencies between computation and communication make it non-trivial to optimize the distributed training efficiency. As of v1.5, PyTorch natively provides several techniques to accelerate distributed data parallel, including bucketing gradients, overlapping computation with communication, and skipping gradient synchronization. Evaluations show that, when configured appropriately, the PyTorch distributed data parallel module attains near-linear scalability using 256 GPUs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助999999采纳,获得10
刚刚
2秒前
3秒前
4秒前
Steven发布了新的文献求助10
5秒前
酷波er应助捉一只小鱼采纳,获得10
5秒前
乌龟发布了新的文献求助10
8秒前
ding应助林少玮采纳,获得10
8秒前
8秒前
小野发布了新的文献求助10
9秒前
10秒前
sky完成签到,获得积分10
10秒前
kytm发布了新的文献求助10
13秒前
苯偶姻发布了新的文献求助10
13秒前
13秒前
蓝风铃完成签到 ,获得积分10
13秒前
15秒前
15秒前
16秒前
17秒前
18秒前
Steven发布了新的文献求助10
18秒前
19秒前
22秒前
ding应助shusz采纳,获得10
23秒前
林少玮发布了新的文献求助10
24秒前
bkagyin应助刻苦的晓槐采纳,获得10
26秒前
26秒前
26秒前
27秒前
27秒前
爆米花应助刘安娜采纳,获得10
30秒前
30秒前
31秒前
Elaine完成签到,获得积分10
31秒前
顾矜应助AI小能手采纳,获得10
32秒前
小野完成签到,获得积分10
32秒前
木木发布了新的文献求助10
32秒前
juice完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075