Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review

计算机科学 方位(导航) 断层(地质) 深度学习 故障检测与隔离 人工智能 模式识别(心理学) 目标检测 工厂(面向对象编程) 机器学习 地质学 地震学 执行机构 程序设计语言
作者
Dhiraj Neupane,Jongwon Seok
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 93155-93178 被引量:201
标识
DOI:10.1109/access.2020.2990528
摘要

A smart factory is a highly digitized and connected production facility that relies on smart manufacturing. Additionally, artificial intelligence is the core technology of smart factories. The use of machine learning and deep learning algorithms has produced fruitful results in many fields like image processing, speech recognition, fault detection, object detection, or medical sciences. With the increment in the use of smart machinery, the faults in the machinery equipment are expected to increase. Machinery fault detection and diagnosis through various deep learning algorithms has increased day by day. Many types of research have been done and published using both open-source and closed-source datasets, implementing the deep learning algorithms. Out of many publicly available datasets, Case Western Reserve University (CWRU) bearing dataset has been widely used to detect and diagnose machinery bearing fault and is accepted as a standard reference for validating the models. This paper summarizes the recent works which use the CWRU bearing dataset in machinery fault detection and diagnosis employing deep learning algorithms. We have reviewed the published works and presented the working algorithm, result, and other necessary details in this paper. This paper, we believe, can be of good help for future researchers to start their work on machinery fault detection and diagnosis using the CWRU dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
飘逸秋荷发布了新的文献求助10
刚刚
sun_lin发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
奥米希完成签到,获得积分10
3秒前
4秒前
天天快乐应助怡然小蚂蚁采纳,获得10
4秒前
魏士博发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
577610822完成签到,获得积分10
6秒前
6秒前
上官若男应助擎天之柱采纳,获得10
8秒前
奋斗幸运发布了新的文献求助10
8秒前
吃的饭广泛应助奥米希采纳,获得20
8秒前
虚幻的彤发布了新的文献求助10
8秒前
RRRCY发布了新的文献求助10
8秒前
之晴发布了新的文献求助10
9秒前
斯文白白发布了新的文献求助30
9秒前
hhh123发布了新的文献求助10
9秒前
ED应助竹峪卿采纳,获得10
10秒前
wind发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
James完成签到,获得积分10
12秒前
Xu完成签到,获得积分20
12秒前
13秒前
百里盼夏发布了新的文献求助10
13秒前
小松丸ko完成签到 ,获得积分10
13秒前
Owen应助ly采纳,获得10
13秒前
14秒前
14秒前
guosheng发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306