Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review

计算机科学 方位(导航) 断层(地质) 深度学习 故障检测与隔离 人工智能 模式识别(心理学) 目标检测 工厂(面向对象编程) 机器学习 地质学 地震学 执行机构 程序设计语言
作者
Dhiraj Neupane,Jongwon Seok
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 93155-93178 被引量:201
标识
DOI:10.1109/access.2020.2990528
摘要

A smart factory is a highly digitized and connected production facility that relies on smart manufacturing. Additionally, artificial intelligence is the core technology of smart factories. The use of machine learning and deep learning algorithms has produced fruitful results in many fields like image processing, speech recognition, fault detection, object detection, or medical sciences. With the increment in the use of smart machinery, the faults in the machinery equipment are expected to increase. Machinery fault detection and diagnosis through various deep learning algorithms has increased day by day. Many types of research have been done and published using both open-source and closed-source datasets, implementing the deep learning algorithms. Out of many publicly available datasets, Case Western Reserve University (CWRU) bearing dataset has been widely used to detect and diagnose machinery bearing fault and is accepted as a standard reference for validating the models. This paper summarizes the recent works which use the CWRU bearing dataset in machinery fault detection and diagnosis employing deep learning algorithms. We have reviewed the published works and presented the working algorithm, result, and other necessary details in this paper. This paper, we believe, can be of good help for future researchers to start their work on machinery fault detection and diagnosis using the CWRU dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yf应助HS采纳,获得50
1秒前
Alpha完成签到,获得积分10
1秒前
1秒前
请叫我风吹麦浪应助James采纳,获得10
1秒前
坦率的乐蕊完成签到 ,获得积分10
2秒前
中单阿飞完成签到,获得积分10
2秒前
乔乔发布了新的文献求助30
2秒前
panx发布了新的文献求助10
2秒前
懵懂的听枫完成签到,获得积分10
2秒前
秃秃完成签到,获得积分10
3秒前
与你一行发布了新的文献求助10
3秒前
星辰大海应助高大雁兰采纳,获得10
4秒前
cc2001完成签到,获得积分10
4秒前
小屋完成签到 ,获得积分10
4秒前
小李发布了新的文献求助10
4秒前
anna1992发布了新的文献求助20
4秒前
5秒前
汉堡包应助panx采纳,获得10
5秒前
搜集达人应助轩辕沛柔采纳,获得10
6秒前
风趣的觅山完成签到,获得积分10
6秒前
张光磊完成签到,获得积分10
7秒前
7秒前
充电宝应助APRIL_SKY采纳,获得10
8秒前
8秒前
无花果应助大魁采纳,获得10
9秒前
9秒前
QIZH发布了新的文献求助10
10秒前
xiaoliu发布了新的文献求助10
10秒前
10秒前
明亮若枫发布了新的文献求助10
11秒前
11秒前
无花果应助闪闪的梦槐采纳,获得10
12秒前
子车茗应助哈哈采纳,获得10
12秒前
郑hw关注了科研通微信公众号
12秒前
Akim应助俏皮的千秋采纳,获得10
13秒前
bbll完成签到,获得积分10
13秒前
13秒前
赘婿应助YANG采纳,获得10
14秒前
15秒前
百里幻竹发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462211
求助须知:如何正确求助?哪些是违规求助? 3055793
关于积分的说明 9049420
捐赠科研通 2745387
什么是DOI,文献DOI怎么找? 1506243
科研通“疑难数据库(出版商)”最低求助积分说明 696037
邀请新用户注册赠送积分活动 695574