机器人
计算机科学
夹持器
刚度
软机器人
模拟
机械工程
结构工程
人工智能
工程类
作者
Yichao Tang,Yinding Chi,Jiefeng Sun,Tzu-Hao Huang,Omid Haji Maghsoudi,Andrew J. Spence,Jianguo Zhao,Hao Su,Jie Yin
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2020-05-08
卷期号:6 (19)
被引量:196
标识
DOI:10.1126/sciadv.aaz6912
摘要
Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable snap-through bistability to fully explore the ability of soft robots to rapidly store and release energy within tens of milliseconds. We demonstrate this generic design principle with three high-performance soft machines: High-speed cheetah-like galloping crawlers with locomotion speeds of 2.68 body length/s, high-speed underwater swimmers (0.78 body length/s), and tunable low-to-high-force soft grippers with over 1 to 103 stiffness modulation (maximum load capacity is 11.4 kg). Our study establishes a new generic design paradigm of next-generation high-performance soft robots that are applicable for multifunctionality, different actuation methods, and materials at multiscales.
科研通智能强力驱动
Strongly Powered by AbleSci AI