亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Log-Linear Model for Predicting the Lithium-ion Battery Age Based on Resistance Extraction from Dynamic Aging Profiles

电池(电) 内阻 锂(药物) 萃取(化学) 统计 荷电状态 锂离子电池 可靠性工程 计算机科学 数学 工程类 功率(物理) 化学 物理 热力学 色谱法 内分泌学 医学
作者
Søren Byg Vilsen,Søren Knudsen Kær,Daniel‐Ioan Stroe
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:56 (6): 6937-6948 被引量:11
标识
DOI:10.1109/tia.2020.3020529
摘要

In this article, we propose a method for extracting, modeling, and predicting the resistance of Lithium-ion batteries directly from the battery dynamic mission profile. While the extraction of the mainly relied on data manipulation and bookkeeping, the modeling and subsequent prediction of the resistance used a log-linear model. It is shown that the estimated log-linear model can be used to create a posterior probability distribution of the age of the battery, given an internal resistance measurement and the state-of-charge (SOC) value at which it was measured. This distribution was used calculate the expected age of the battery, and the expected age was compared to weekly check-ups. At an SOC of 80% a mean absolute error (MAE), between the weekly check-ups and the expected age, of 5.83 weeks [706 full equivalent cycles (FEC)] was achieved. Furthermore, it is shown that by introducing a decision threshold the MAE could be reduced as far as 2.65 weeks (321 FEC). Finally, a method is introduced for handling cases where the SOC was not known exactly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
铁妞妞是土猫完成签到,获得积分20
6秒前
Akim应助喜悦的不言采纳,获得10
7秒前
小二郎应助铁妞妞是土猫采纳,获得10
14秒前
18秒前
Jasper应助小小K采纳,获得10
21秒前
拼搏念蕾完成签到 ,获得积分10
25秒前
27秒前
29秒前
量子星尘发布了新的文献求助10
33秒前
jh完成签到 ,获得积分10
35秒前
39秒前
Yu发布了新的文献求助10
42秒前
echo完成签到 ,获得积分10
45秒前
50秒前
53秒前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
AaronW完成签到 ,获得积分10
1分钟前
健小子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Lorain完成签到,获得积分10
1分钟前
包驳发布了新的文献求助20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小小K发布了新的文献求助10
2分钟前
好巧发布了新的文献求助10
2分钟前
科研通AI6.1应助但行好事采纳,获得10
2分钟前
科研通AI6.1应助但行好事采纳,获得10
2分钟前
2分钟前
魔幻的芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
火星上的宝马完成签到,获得积分10
2分钟前
顾矜应助小小K采纳,获得10
2分钟前
悲凉的忆南完成签到,获得积分10
2分钟前
陈旧完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764029
求助须知:如何正确求助?哪些是违规求助? 5546939
关于积分的说明 15405777
捐赠科研通 4899486
什么是DOI,文献DOI怎么找? 2635624
邀请新用户注册赠送积分活动 1583808
关于科研通互助平台的介绍 1538933