PiiGAN: Generative Adversarial Networks for Pluralistic Image Inpainting

修补 计算机科学 人工智能 基本事实 发电机(电路理论) 一致性(知识库) 图像(数学) 背景(考古学) 特征(语言学) 自动汇总 生成语法 模式识别(心理学) 深度学习 生成模型 生物 物理 哲学 量子力学 古生物学 语言学 功率(物理)
作者
Weiwei Cai,Zhanguo Wei
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 48451-48463 被引量:125
标识
DOI:10.1109/access.2020.2979348
摘要

The latest methods based on deep learning have achieved amazing results regarding the complex work of inpainting large missing areas in an image. But this type of method generally attempts to generate one single “optimal” result, ignoring many other plausible results. Considering the uncertainty of the inpainting task, one sole result can hardly be regarded as a desired regeneration of the missing area. In view of this weakness, which is related to the design of the previous algorithms, we propose a novel deep generative model equipped with a brand new style extractor which can extract the style feature (latent vector) from the ground truth. Once obtained, the extracted style feature and the ground truth are both input into the generator. We also craft a consistency loss that guides the generated image to approximate the ground truth. After iterations, our generator is able to learn the mapping of styles corresponding to multiple sets of vectors. The proposed model can generate a large number of results consistent with the context semantics of the image. Moreover, we evaluated the effectiveness of our model on three datasets, i.e., CelebA, PlantVillage, and MauFlex. Compared to state-of-the-art inpainting methods, this model is able to offer desirable inpainting results with both better quality and higher diversity. The code and model will be made available on https://github.com/vivitsai/PiiGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助今今采纳,获得10
1秒前
2秒前
2秒前
3秒前
巴斯光年完成签到,获得积分20
3秒前
3秒前
DBY发布了新的文献求助10
5秒前
麦旋风发布了新的文献求助10
6秒前
Chunyan_Yu发布了新的文献求助10
6秒前
6秒前
枭源完成签到,获得积分10
6秒前
深情安青应助和谐的芷天采纳,获得10
7秒前
7秒前
liyizhe发布了新的文献求助30
7秒前
taowang14完成签到,获得积分10
8秒前
8秒前
CipherSage应助朴素的问枫采纳,获得10
9秒前
田様应助忐忑的怜烟采纳,获得10
9秒前
11秒前
旅行者发布了新的文献求助10
12秒前
Ava应助北辰采纳,获得10
12秒前
慕山完成签到,获得积分10
12秒前
wanci应助q792309106采纳,获得10
13秒前
13秒前
简单成危发布了新的文献求助10
13秒前
啦啦完成签到 ,获得积分10
13秒前
glimmen完成签到,获得积分10
15秒前
liyizhe完成签到,获得积分10
17秒前
zzz发布了新的文献求助10
17秒前
17秒前
七栀发布了新的文献求助10
17秒前
深情安青应助Zz采纳,获得30
17秒前
17秒前
猪猪hero应助欣喜靖采纳,获得10
19秒前
安静的缘分发布了新的文献求助200
19秒前
20秒前
w_完成签到,获得积分10
20秒前
拓跋涵易发布了新的文献求助10
20秒前
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144