PiiGAN: Generative Adversarial Networks for Pluralistic Image Inpainting

修补 计算机科学 人工智能 基本事实 发电机(电路理论) 一致性(知识库) 图像(数学) 背景(考古学) 特征(语言学) 自动汇总 生成语法 模式识别(心理学) 深度学习 生成模型 古生物学 功率(物理) 语言学 物理 哲学 量子力学 生物
作者
Weiwei Cai,Zhanguo Wei
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 48451-48463 被引量:125
标识
DOI:10.1109/access.2020.2979348
摘要

The latest methods based on deep learning have achieved amazing results regarding the complex work of inpainting large missing areas in an image. But this type of method generally attempts to generate one single “optimal” result, ignoring many other plausible results. Considering the uncertainty of the inpainting task, one sole result can hardly be regarded as a desired regeneration of the missing area. In view of this weakness, which is related to the design of the previous algorithms, we propose a novel deep generative model equipped with a brand new style extractor which can extract the style feature (latent vector) from the ground truth. Once obtained, the extracted style feature and the ground truth are both input into the generator. We also craft a consistency loss that guides the generated image to approximate the ground truth. After iterations, our generator is able to learn the mapping of styles corresponding to multiple sets of vectors. The proposed model can generate a large number of results consistent with the context semantics of the image. Moreover, we evaluated the effectiveness of our model on three datasets, i.e., CelebA, PlantVillage, and MauFlex. Compared to state-of-the-art inpainting methods, this model is able to offer desirable inpainting results with both better quality and higher diversity. The code and model will be made available on https://github.com/vivitsai/PiiGAN .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Echo关注了科研通微信公众号
刚刚
1秒前
fan发布了新的文献求助10
1秒前
2秒前
2秒前
畅快的鱼发布了新的文献求助30
2秒前
3秒前
小王同学完成签到,获得积分10
4秒前
CipherSage应助Raye采纳,获得10
4秒前
飞天小女警完成签到 ,获得积分10
5秒前
Orange应助龚昊采纳,获得10
5秒前
5秒前
5秒前
玄枵完成签到,获得积分10
7秒前
汤汤发布了新的文献求助10
8秒前
木林森发布了新的文献求助10
8秒前
腼腆的晟睿完成签到,获得积分10
8秒前
赘婿应助等待小天鹅采纳,获得10
9秒前
pluto应助安小敏采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
jiojio完成签到,获得积分10
12秒前
12秒前
123完成签到,获得积分10
12秒前
怕黑的墨镜完成签到,获得积分10
13秒前
wanci应助李老八采纳,获得10
13秒前
研友_VZG7GZ应助彪壮的绮烟采纳,获得10
14秒前
Akim应助Kc采纳,获得10
14秒前
CodeCraft应助weila采纳,获得30
15秒前
折枝念晚宁完成签到,获得积分10
15秒前
科研科完成签到,获得积分10
15秒前
16秒前
少年ss完成签到,获得积分20
16秒前
16秒前
不弱小妖完成签到,获得积分10
17秒前
17秒前
17秒前
sandy_bear完成签到,获得积分20
18秒前
华子的五A替身完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546