材料科学
钙钛矿(结构)
光致发光
发光二极管
电致发光
量子产额
光电子学
激子
量子效率
二极管
纳米技术
化学工程
荧光
光学
凝聚态物理
图层(电子)
工程类
物理
作者
Fanyuan Meng,Xinyan Liu,Yuxuan Chen,Xinyi Cai,Mengke Li,Tingting Shi,Ziming Chen,Dongcheng Chen,Hin‐Lap Yip,Charusheela Ramanan,Paul W. M. Blom,Shi‐Jian Su
标识
DOI:10.1002/adfm.201910167
摘要
Abstract With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A −1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI