Event-based encoding of biological motion and location in visual working memory

生物运动 编码(内存) 事件(粒子物理) 维数(图论) 运动(物理) 工作记忆 计算机科学 分散注意力 心理学 沟通 认知心理学 人工智能 神经科学 认知 数学 物理 量子力学 纯数学
作者
Quan Gu,Xueyi Wan,Hong Ma,Xiqian Lu,Yang Guo,Mowei Shen,Zaifeng Gao
出处
期刊:Quarterly Journal of Experimental Psychology [SAGE]
卷期号:73 (8): 1261-1277 被引量:3
标识
DOI:10.1177/1747021820903042
摘要

We make use of discrete yet meaningful events to orient ourselves to the dynamic environment. Among these events, biological motion, referring to the movements of animate entities, is one of the most biologically salient. We usually encounter biological motions of multiple human beings taking place simultaneously at distinct locations. How we encode biological motions into visual working memory (VWM) to form a coherent experience of the external world and guide our social behaviour remains unclear. This study for the first time addressed the VWM encoding mechanism of biological motions and their corresponding locations. We tested an event-based encoding hypothesis for biological motion and location: When one element of an event is required to be memorised, the irrelevant element of an event will also be extracted into VWM. We presented participants with three biological motions at different locations and required them to memorise only the biological motions or their locations while ignoring the other dimension. We examined the event-based encoding by probing a distracting effect: If the event-based encoding took place, the change of irrelevant dimension in the probe would lead to a significant distraction and impair the performance of detecting target dimension. We found significant distracting effects, which lasted for 3 s but vanished at 6 s, regardless of the target dimension (biological motions vs. locations, Experiment 1) and the exposure time of memory array (1 s vs. 3 s, Experiment 2). These results together support an event-based encoding mechanism during VWM encoding of biological motions and their corresponding locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzf发布了新的文献求助10
1秒前
丘比特应助lukescholar采纳,获得10
2秒前
璇213发布了新的文献求助10
2秒前
2秒前
3秒前
向日葵发布了新的文献求助10
3秒前
3秒前
淡淡夕阳发布了新的文献求助10
3秒前
比巴卜完成签到 ,获得积分10
3秒前
4秒前
xuan完成签到,获得积分10
4秒前
婷婷完成签到,获得积分10
5秒前
GarrickO应助cxd采纳,获得20
5秒前
dgygy发布了新的文献求助10
5秒前
5秒前
6秒前
安铸完成签到 ,获得积分10
6秒前
所所应助一张不够花采纳,获得10
6秒前
7秒前
平头张完成签到,获得积分10
7秒前
nannannan发布了新的文献求助10
7秒前
7秒前
7秒前
xuan发布了新的文献求助30
8秒前
9秒前
9秒前
10秒前
deer发布了新的文献求助10
11秒前
air-yi完成签到,获得积分0
11秒前
11秒前
风清扬发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
烟花应助可乐加冰采纳,获得10
12秒前
布丁发布了新的文献求助10
12秒前
七寻笑完成签到,获得积分20
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351484
求助须知:如何正确求助?哪些是违规求助? 4484581
关于积分的说明 13959628
捐赠科研通 4384162
什么是DOI,文献DOI怎么找? 2408799
邀请新用户注册赠送积分活动 1401373
关于科研通互助平台的介绍 1374874