Proton-assisted growth of ultra-flat graphene films

石墨烯 化学气相沉积 材料科学 范德瓦尔斯力 化学物理 石墨烯纳米带 光电子学 化学工程 纳米技术 化学 分子 有机化学 工程类
作者
Guowen Yuan,Dongjing Lin,Yong Wang,Xianlei Huang,Wang Chen,Xuedong Xie,Junyu Zong,Qian-Qian Yuan,Hang Zheng,Di Wang,Jie Xu,Shao‐Chun Li,Yi Zhang,Jian Sun,Xiaoxiang Xi,Libo Gao
出处
期刊:Nature [Springer Nature]
卷期号:577 (7789): 204-208 被引量:138
标识
DOI:10.1038/s41586-019-1870-3
摘要

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors1–10. However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film1–4,11,12. Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration13–17 and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering. A growth process in which protons decouple graphene from the underlying substrate greatly reduces the number of wrinkles that usually degrade large graphene films grown by chemical vapour deposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxaz发布了新的文献求助10
1秒前
2秒前
wsx完成签到,获得积分10
2秒前
聪慧的迎夏完成签到,获得积分10
2秒前
慕青应助我很厉害的采纳,获得10
2秒前
zj发布了新的文献求助10
3秒前
浮生发布了新的文献求助10
3秒前
听蝉完成签到 ,获得积分10
3秒前
南冥完成签到 ,获得积分10
8秒前
9秒前
Akim应助小仙鱼采纳,获得10
9秒前
botanist完成签到 ,获得积分10
10秒前
11秒前
香蕉觅云应助翊嘉采纳,获得10
12秒前
13秒前
14秒前
小人物的坚持完成签到 ,获得积分10
15秒前
谢佩奇完成签到,获得积分10
16秒前
17秒前
18秒前
yan1e完成签到 ,获得积分10
18秒前
18秒前
锌银12306发布了新的文献求助10
18秒前
cc发布了新的文献求助10
18秒前
浮生发布了新的文献求助10
20秒前
22秒前
星叶完成签到 ,获得积分10
23秒前
科研通AI2S应助发发采纳,获得10
24秒前
25秒前
小小完成签到,获得积分10
26秒前
diee发布了新的文献求助10
27秒前
27秒前
SSK完成签到 ,获得积分10
27秒前
rosen完成签到,获得积分20
28秒前
当麻完成签到,获得积分10
29秒前
29秒前
谦让初南发布了新的文献求助10
29秒前
斯文败类应助cc采纳,获得10
30秒前
东箭南金完成签到,获得积分20
30秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009