亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method

医学 乳腺癌 接收机工作特性 病态的 深度学习 人工智能 癌症 数据集 联营 曲线下面积 肿瘤科 内科学 计算机科学
作者
Yu‐Hong Qu,Haitao Zhu,Kun Cao,Xiao‐Ting Li,Meng Ye,Ying‐Shi Sun
出处
期刊:Thoracic Cancer [Wiley]
卷期号:11 (3): 651-658 被引量:74
标识
DOI:10.1111/1759-7714.13309
摘要

Abstract Background The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer. Methods A total of 302 breast cancer patients in this retrospective study were randomly divided into a training set ( n = 244) and a validation set ( n = 58). Tumor regions were manually delineated on each slice by two expert radiologists on enhanced T1‐weighted images. Pathological results were used as ground truth. Deep learning network contained five repetitions of convolution and max‐pooling layers and ended with three dense layers. The pre‐NAC model and post‐NAC model inputted six phases of pre‐NAC and post‐NAC images, respectively. The combined model used 12 channels from six phases of pre‐NAC and six phases of post‐NAC images. All models above included three indexes of molecular type as one additional input channel. Results The training set contained 137 non‐pCR and 107 pCR participants. The validation set contained 33 non‐pCR and 25 pCR participants. The area under the receiver operating characteristic (ROC) curve (AUC) of three models was 0.553 for pre‐NAC, 0.968 for post‐NAC and 0.970 for the combined data, respectively. A significant difference was found in AUC between using pre‐NAC data alone and combined data ( P < 0.001). The positive predictive value of the combined model was greater than that of the post‐NAC model (100% vs. 82.8%, P = 0.033). Conclusion This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data. The model performed better than using pre‐NAC data only, and also performed better than using post‐NAC data only. Key points Significant findings of the study. It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater AUC than using pre‐NAC data only. What this study adds This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
satisusu完成签到 ,获得积分10
1秒前
7秒前
雪地太阳发布了新的文献求助10
13秒前
16秒前
qingxiao完成签到,获得积分10
17秒前
Chenly完成签到,获得积分10
18秒前
上官若男应助科研通管家采纳,获得10
19秒前
slayers应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
22秒前
Ljm完成签到,获得积分10
28秒前
28秒前
所所应助cary采纳,获得10
38秒前
wzzznh发布了新的文献求助10
39秒前
阿白完成签到,获得积分10
45秒前
bocky完成签到 ,获得积分10
47秒前
汉堡包应助司空铭采纳,获得10
47秒前
端庄大白完成签到 ,获得积分10
49秒前
几两完成签到 ,获得积分10
50秒前
54秒前
西风惊绿完成签到,获得积分10
56秒前
隐形惜筠完成签到 ,获得积分10
57秒前
司空铭发布了新的文献求助10
1分钟前
1分钟前
claud完成签到 ,获得积分0
1分钟前
1分钟前
李爱国应助Ljm采纳,获得10
1分钟前
思源应助yang采纳,获得10
1分钟前
认真的觅松完成签到 ,获得积分10
1分钟前
liourg完成签到 ,获得积分10
1分钟前
樱桃猴子完成签到,获得积分0
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
1分钟前
可久斯基完成签到 ,获得积分10
1分钟前
程宇给Jino的求助进行了留言
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995072
求助须知:如何正确求助?哪些是违规求助? 3535113
关于积分的说明 11267102
捐赠科研通 3274910
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764