清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method

医学 乳腺癌 接收机工作特性 病态的 深度学习 人工智能 癌症 数据集 联营 曲线下面积 肿瘤科 内科学 计算机科学
作者
Yu‐Hong Qu,Haitao Zhu,Kun Cao,Xiao‐Ting Li,Meng Ye,Ying‐Shi Sun
出处
期刊:Thoracic Cancer [Wiley]
卷期号:11 (3): 651-658 被引量:74
标识
DOI:10.1111/1759-7714.13309
摘要

Abstract Background The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer. Methods A total of 302 breast cancer patients in this retrospective study were randomly divided into a training set ( n = 244) and a validation set ( n = 58). Tumor regions were manually delineated on each slice by two expert radiologists on enhanced T1‐weighted images. Pathological results were used as ground truth. Deep learning network contained five repetitions of convolution and max‐pooling layers and ended with three dense layers. The pre‐NAC model and post‐NAC model inputted six phases of pre‐NAC and post‐NAC images, respectively. The combined model used 12 channels from six phases of pre‐NAC and six phases of post‐NAC images. All models above included three indexes of molecular type as one additional input channel. Results The training set contained 137 non‐pCR and 107 pCR participants. The validation set contained 33 non‐pCR and 25 pCR participants. The area under the receiver operating characteristic (ROC) curve (AUC) of three models was 0.553 for pre‐NAC, 0.968 for post‐NAC and 0.970 for the combined data, respectively. A significant difference was found in AUC between using pre‐NAC data alone and combined data ( P < 0.001). The positive predictive value of the combined model was greater than that of the post‐NAC model (100% vs. 82.8%, P = 0.033). Conclusion This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data. The model performed better than using pre‐NAC data only, and also performed better than using post‐NAC data only. Key points Significant findings of the study. It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater AUC than using pre‐NAC data only. What this study adds This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
18秒前
蝎子莱莱xth完成签到,获得积分10
31秒前
氢锂钠钾铷铯钫完成签到,获得积分10
37秒前
Square完成签到,获得积分10
44秒前
46秒前
牛的滑发布了新的文献求助10
50秒前
Hello应助牛的滑采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
Owen应助菜菜子采纳,获得10
1分钟前
1分钟前
菜菜子发布了新的文献求助10
1分钟前
zcbb完成签到,获得积分10
1分钟前
菜菜子完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
usami42完成签到,获得积分10
2分钟前
2分钟前
drirshad完成签到,获得积分10
2分钟前
无奈代秋完成签到,获得积分10
3分钟前
赘婿应助无奈代秋采纳,获得10
3分钟前
3分钟前
4分钟前
无奈代秋发布了新的文献求助10
4分钟前
Zhu完成签到 ,获得积分10
4分钟前
Yini应助科研通管家采纳,获得100
4分钟前
lzy完成签到,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
6分钟前
nbtzy完成签到,获得积分10
7分钟前
研友_拓跋戾完成签到,获得积分10
7分钟前
汉堡包应助研友_拓跋戾采纳,获得10
7分钟前
量子星尘发布了新的文献求助50
7分钟前
方白秋完成签到,获得积分0
7分钟前
8分钟前
ljl86400完成签到,获得积分10
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
多亿点完成签到 ,获得积分10
10分钟前
usami42发布了新的文献求助10
10分钟前
lovelife完成签到,获得积分10
11分钟前
开心每一天完成签到 ,获得积分10
11分钟前
披着羊皮的狼完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910339
求助须知:如何正确求助?哪些是违规求助? 4186233
关于积分的说明 12999210
捐赠科研通 3953640
什么是DOI,文献DOI怎么找? 2168011
邀请新用户注册赠送积分活动 1186464
关于科研通互助平台的介绍 1093597