Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method

医学 乳腺癌 接收机工作特性 病态的 深度学习 人工智能 癌症 数据集 联营 曲线下面积 肿瘤科 内科学 计算机科学
作者
Yu‐Hong Qu,Haitao Zhu,Kun Cao,Xiao‐Ting Li,Meng Ye,Ying‐Shi Sun
出处
期刊:Thoracic Cancer [Wiley]
卷期号:11 (3): 651-658 被引量:67
标识
DOI:10.1111/1759-7714.13309
摘要

Abstract Background The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer. Methods A total of 302 breast cancer patients in this retrospective study were randomly divided into a training set ( n = 244) and a validation set ( n = 58). Tumor regions were manually delineated on each slice by two expert radiologists on enhanced T1‐weighted images. Pathological results were used as ground truth. Deep learning network contained five repetitions of convolution and max‐pooling layers and ended with three dense layers. The pre‐NAC model and post‐NAC model inputted six phases of pre‐NAC and post‐NAC images, respectively. The combined model used 12 channels from six phases of pre‐NAC and six phases of post‐NAC images. All models above included three indexes of molecular type as one additional input channel. Results The training set contained 137 non‐pCR and 107 pCR participants. The validation set contained 33 non‐pCR and 25 pCR participants. The area under the receiver operating characteristic (ROC) curve (AUC) of three models was 0.553 for pre‐NAC, 0.968 for post‐NAC and 0.970 for the combined data, respectively. A significant difference was found in AUC between using pre‐NAC data alone and combined data ( P < 0.001). The positive predictive value of the combined model was greater than that of the post‐NAC model (100% vs. 82.8%, P = 0.033). Conclusion This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data. The model performed better than using pre‐NAC data only, and also performed better than using post‐NAC data only. Key points Significant findings of the study. It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater AUC than using pre‐NAC data only. What this study adds This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助ai化学采纳,获得10
刚刚
念清宸发布了新的文献求助10
1秒前
1秒前
晓晓来了发布了新的文献求助10
3秒前
adong完成签到,获得积分10
3秒前
5秒前
共享精神应助feizhuliu采纳,获得10
6秒前
树阴照水完成签到,获得积分10
6秒前
丹霞应助十一采纳,获得10
6秒前
调研昵称发布了新的文献求助10
6秒前
7秒前
7秒前
执着新蕾发布了新的文献求助10
8秒前
NPC应助晓晓来了采纳,获得10
8秒前
切菜的猪应助晓晓来了采纳,获得10
8秒前
树阴照水发布了新的文献求助10
9秒前
11秒前
wwz应助清新的网络采纳,获得10
11秒前
11秒前
科目三应助有机酸采纳,获得10
11秒前
ai化学完成签到,获得积分10
11秒前
在水一方应助研友_Z729Mn采纳,获得10
12秒前
乐乐应助lcm采纳,获得10
13秒前
15秒前
15秒前
闭着眼数星星完成签到,获得积分10
16秒前
Ran发布了新的文献求助10
17秒前
17秒前
shufessm完成签到,获得积分0
17秒前
19秒前
chengzi发布了新的文献求助10
20秒前
生动的冰蓝完成签到 ,获得积分10
20秒前
20秒前
Hhhhh发布了新的文献求助10
21秒前
丘比特应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得20
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112