Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method

医学 乳腺癌 接收机工作特性 病态的 深度学习 人工智能 癌症 数据集 联营 曲线下面积 肿瘤科 内科学 计算机科学
作者
Yu‐Hong Qu,Haitao Zhu,Kun Cao,Xiao‐Ting Li,Meng Ye,Ying‐Shi Sun
出处
期刊:Thoracic Cancer [Wiley]
卷期号:11 (3): 651-658 被引量:74
标识
DOI:10.1111/1759-7714.13309
摘要

Abstract Background The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer. Methods A total of 302 breast cancer patients in this retrospective study were randomly divided into a training set ( n = 244) and a validation set ( n = 58). Tumor regions were manually delineated on each slice by two expert radiologists on enhanced T1‐weighted images. Pathological results were used as ground truth. Deep learning network contained five repetitions of convolution and max‐pooling layers and ended with three dense layers. The pre‐NAC model and post‐NAC model inputted six phases of pre‐NAC and post‐NAC images, respectively. The combined model used 12 channels from six phases of pre‐NAC and six phases of post‐NAC images. All models above included three indexes of molecular type as one additional input channel. Results The training set contained 137 non‐pCR and 107 pCR participants. The validation set contained 33 non‐pCR and 25 pCR participants. The area under the receiver operating characteristic (ROC) curve (AUC) of three models was 0.553 for pre‐NAC, 0.968 for post‐NAC and 0.970 for the combined data, respectively. A significant difference was found in AUC between using pre‐NAC data alone and combined data ( P < 0.001). The positive predictive value of the combined model was greater than that of the post‐NAC model (100% vs. 82.8%, P = 0.033). Conclusion This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data. The model performed better than using pre‐NAC data only, and also performed better than using post‐NAC data only. Key points Significant findings of the study. It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater AUC than using pre‐NAC data only. What this study adds This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre‐NAC and post‐NAC MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GG完成签到,获得积分10
1秒前
和谐的敏发布了新的文献求助10
2秒前
2秒前
曾经冰露完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
思源应助悬铃木采纳,获得10
4秒前
harden发布了新的文献求助10
5秒前
wanci应助Rlawlight采纳,获得10
6秒前
zhaimen完成签到 ,获得积分10
6秒前
shizhiheng发布了新的文献求助10
7秒前
张莹莹发布了新的文献求助10
8秒前
科目三应助唐唐采纳,获得10
8秒前
nature完成签到,获得积分10
8秒前
陈夏萍完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
zhuzhu完成签到,获得积分20
10秒前
tutoutou发布了新的文献求助10
10秒前
HD发布了新的文献求助10
10秒前
等待映阳完成签到 ,获得积分10
13秒前
田様应助小易采纳,获得10
13秒前
13秒前
火星上莛发布了新的文献求助10
13秒前
luchang123qq发布了新的文献求助10
14秒前
14秒前
gqw3505完成签到,获得积分10
15秒前
ff发布了新的文献求助10
16秒前
迷你的酒窝完成签到 ,获得积分10
17秒前
天天快乐应助www采纳,获得10
17秒前
一直以来发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
董小婷发布了新的文献求助10
20秒前
迷你的酒窝关注了科研通微信公众号
21秒前
SARON完成签到 ,获得积分10
22秒前
tutoutou完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373