Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges

阳极 成核 材料科学 枝晶(数学) 法拉第效率 锂(药物) 电解质 纳米技术 电化学电位 电化学 化学 电极 几何学 医学 内分泌学 物理化学 有机化学 数学
作者
Mingda Gao,Hui Li,Li Xu,Qing Xue,Xinran Wang,Ying Bai,Chuan Wu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:59: 666-687 被引量:97
标识
DOI:10.1016/j.jechem.2020.11.034
摘要

The dependence on portable devices and electrical vehicles has triggered the awareness on the energy storage systems with ever-growing energy density. Lithium metal batteries (LMBs) has revived and attracted considerable attention due to its high volumetric (2046 mAh cm−3), gravimetric specific capacity (3862 mAh g−1) and the lowest reduction potential (−3.04 V vs. SHE.). However, during the electrochemical process of lithium anode, the growth of lithium dendrite constitutes the biggest stumbling block on the road to LMBs application. The undesirable dendrite not only limit the Coulombic efficiency (CE) of LMBs, but also cause thermal runaway and other safety issues due to short-circuits. Understanding the mechanisms of lithium nucleation and dendrite growth provides insights to solve these problems. Herein, we summarize the electrochemical models that inherently describe the lithium nucleation and dendrite growth, such as the thermodynamic, electrodeposition kinetics, internal stress, and interface transmission models. Essential parameters of temperature, current density, internal stress and interfacial Li+ flux are focused. To improve the LMBs performance, state-of-the-art optimization procedures have been developed and systematically illustrated with the intrinsic regulation principles for better lithium anode stability, including electrolyte optimization, artificial interface layers, three-dimensional hosts, external field, etc. Towards practical applications of LMBs, the current development of pouch cell LMBs have been further introduced with different assembly systems and fading mechanism. However, challenges and obstacles still exist for the development of LMBs, such as in-depth understanding and in-situ observation of dendrite growth, the surface protection under extreme condition and the self-healing of solid electrolyte interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨沁完成签到,获得积分10
2秒前
赘婿应助淡淡的元霜采纳,获得10
3秒前
4秒前
lixiviant完成签到,获得积分20
5秒前
狗妹那塞完成签到,获得积分10
6秒前
6秒前
小巷夜雨完成签到 ,获得积分10
7秒前
Abi发布了新的文献求助10
7秒前
爆米花应助huco采纳,获得10
8秒前
无花果应助llllllll采纳,获得10
8秒前
欣荣完成签到,获得积分10
8秒前
9秒前
Chikit完成签到,获得积分0
10秒前
xxx发布了新的文献求助30
10秒前
大个应助飘逸的天菱采纳,获得10
11秒前
11秒前
11秒前
PEI完成签到,获得积分10
11秒前
12秒前
JamesPei应助十月采纳,获得10
12秒前
深情安青应助生姜采纳,获得10
14秒前
14秒前
yx发布了新的文献求助10
15秒前
淡淡宛完成签到 ,获得积分10
16秒前
16秒前
李健应助冷静的豪采纳,获得10
16秒前
Beluga发布了新的文献求助10
17秒前
陆陆完成签到,获得积分10
17秒前
Akim应助zhangpeng采纳,获得10
17秒前
18秒前
黄函发布了新的文献求助10
19秒前
xioabu发布了新的文献求助10
21秒前
文艺的初蓝完成签到 ,获得积分10
21秒前
NoGtime发布了新的文献求助10
21秒前
22秒前
坚定的若枫完成签到,获得积分10
23秒前
缥缈剑愁完成签到,获得积分10
24秒前
自信的溪灵完成签到,获得积分10
25秒前
Yana关注了科研通微信公众号
25秒前
嘎嘎的鸡神完成签到,获得积分10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140881
求助须知:如何正确求助?哪些是违规求助? 2791855
关于积分的说明 7800523
捐赠科研通 2448091
什么是DOI,文献DOI怎么找? 1302393
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601210