毛螺菌科
普雷沃菌属
微生物群
代谢组
生物
瘤胃球菌
肠道菌群
食品科学
粪便
微生物学
厚壁菌
基因组
16S核糖体RNA
生物化学
细菌
代谢物
基因
遗传学
作者
Hui Jiang,Shaoming Fang,Hui Yang,Congying Chen
摘要
Feed efficiency (FE) is an economically important trait in pig production. Gut microbiota plays an important role in energy harvest, nutrient metabolism, and fermentation of dietary indigestible components. Whether and which gut microbes affect FE in pigs are largely unknown. Here, a total of 208 healthy Duroc pigs were used as experimental materials. Feces and serum samples were collected at the age of 140 d. We first performed 16S rRNA gene and metagenomic sequencing analysis to investigate the relationship between the gut microbiome and porcine residual feed intake (RFI). 16S rRNA gene sequencing analysis detected 21 operational taxonomic units showing the tendency to correlation with the RFI (P < 0.01). Metagenomic sequencing further identified that the members of Clostridiales, e.g., Ruminococcus flavefaoiens, Lachnospiraceae bacterium 28-4, and Lachnospiraceae phytofermentans, were enriched in pigs with low RFI (high-FE), while 11 bacterial species including 5 Prevotella spp., especially, the Prevotella copri, had higher abundance in pigs with high RFI. Functional capacity analysis suggested that the gut microbiome of low RFI pigs had a high abundance of the pathways related to amino acid metabolism and biosynthesis, but a low abundance of the pathways associated with monosaccharide metabolism and lipopolysaccharide biosynthesis. Serum metabolome and fecal short-chain fatty acids were determined by UPLC-QTOF/MS and gas chromatography, respectively. Propionic acid in feces and the serum metabolites related to amino acid metabolism were negatively correlated with the RFI. The results from this study may provide potential gut microbial biomarkers that could be used for improving FE in pig production industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI