线粒体生物发生
MPTP公司
黑质
致密部
TFAM公司
线粒体
生物能学
多巴胺
多巴胺能
细胞生物学
化学
线粒体ROS
生物
药理学
内分泌学
作者
Swetha Pavani Rao,Neelam Sharma,Shasi V. Kalivendi
标识
DOI:10.1016/j.bbabio.2020.148157
摘要
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by the death of dopamine neurons of Substantia nigra pars compacta (SNpc) leading to motor deficits. Amongst the mechanisms proposed, mitochondrial dysfunction, reduced complex-I and PGC1α levels were found to correlate with the pathology of PD. As embelin is a natural product with structural resemblance to ubiquinone, exhibits mitochondrial uncoupling and antioxidant effects, in the present study, we sought to examine its role in the mechanisms mediating PD. Results indicate that embelin protects from MPP+-induced oxidative stress and apoptosis in a time and dose-dependent manner in N27 dopaminergic cells. Cells treated with embelin exhibited increased levels of pAMPK, SIRT1 and PGC1α leading to enhanced mitochondrial biogenesis. Though treatment of cells with MPP+ also increased pAMPK levels, but, SIRT1 and PGC1α levels decreased substantially, possibly due to the block in the mitochondrial electron transport chain and reduced NAD/NADH levels. The mitochondrial uncoupling effects of embelin leading to increased NAD/NADH levels followed by enhanced SIRT1, PGC1α and mitochondrial biogenesis were found to confer embelin mediated protection as treatment of cells with SIRT1 inhibitor or siRNA nullified this effect. Embelin (10 mg/kg) also conferred protection in vivo in MPTP mouse model of PD, wherein, MPTP-induced loss of TH staining, reduced striatal dopamine and markers of mitochondrial biogenesis pathway were averted by embelin.
科研通智能强力驱动
Strongly Powered by AbleSci AI