Jian Chen,Jonathan K. Tatman,Feng Zhao,Roger G. Miller,Wenming Tang,Maxim N. Gussev,Keith J. Leonard,Benjamin J. Sutton,Greg Frederick
标识
DOI:10.1115/pvp2019-93667
摘要
Abstract The welding task focuses on development of advanced welding technologies for repair and maintenance of nuclear reactor structural components to safely and cost-effectively extend the service life of nuclear power reactors. This paper presents an integrated research and development effort by the Department of Energy Light Water Reactor Sustainability Program through the Oak Ridge National Laboratory (ORNL) and Electric Power Research Institute (EPRI) to develop a patent-pending technology, Auxiliary Beam Stress Improved Laser Welding Technique, that proactively manages the stresses during laser repair welding of highly irradiated reactor internals without helium induced cracking (HeIC). Finite element numerical simulations and in-situ temperature and strain experimental validation have been utilized to identify candidate welding conditions to achieve significant stress compression near the weld pool during cooling. Preliminary welding experiments were performed on irradiated stainless-steel plates (Type 304L). Post-weld characterization reveals that no macroscopic HeIC was observed.