亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The competing risk approach for prediction of preeclampsia

医学 子痫前期 贝叶斯定理 怀孕 危险分层 风险评估 产科 胎龄 后验概率 估计 统计 贝叶斯概率 内科学 计算机科学 数学 经济 管理 生物 遗传学 计算机安全
作者
D. Wright,Alan Wright,K. H. Nicolaides
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
卷期号:223 (1): 12-23.e7 被引量:239
标识
DOI:10.1016/j.ajog.2019.11.1247
摘要

The established method of the assessment of the risk for development of preeclampsia is to identify risk factors from maternal demographic characteristics and medical history; in the presence of such factors, the patient is classified as high risk and in their absence as low risk. Although this approach is simple to perform, it has poor performance of the prediction of preeclampsia and does not provide patient-specific risks. This review describes a new approach that allows the estimation of patient-specific risks of delivery with preeclampsia before any specified gestational age by maternal demographic characteristics and medical history with biomarkers obtained either individually or in combination at any stage in pregnancy. In the competing risks approach, every woman has a personalized distribution of gestational age at delivery with preeclampsia; whether she experiences preeclampsia or not before a specified gestational age depends on competition between delivery before or after the development of preeclampsia. The personalized distribution comes from the application of Bayes theorem to combine a previous distribution, which is determined from maternal factors, with likelihoods from biomarkers. As new data become available, what were posterior probabilities take the role as the previous probability, and data collected at different stages are combined by repeating the application of Bayes theorem to form a new posterior at each stage, which allows for dynamic prediction of preeclampsia. The competing risk model can be used for precision medicine and risk stratification at different stages of pregnancy. In the first trimester, the model has been applied to identify a high-risk group that would benefit from preventative therapeutic interventions. In the second trimester, the model has been used to stratify the population into high-, intermediate-, and low-risk groups in need of different intensities of subsequent monitoring, thereby minimizing unexpected adverse perinatal events. The competing risks model can also be used in surveillance of women presenting to specialist clinics with signs or symptoms of hypertensive disorders; combination of maternal factors and biomarkers provide patient-specific risks for preeclampsia that lead to personalized stratification of the intensity of monitoring, with risks updated on each visit on the basis of biomarker measurements. The established method of the assessment of the risk for development of preeclampsia is to identify risk factors from maternal demographic characteristics and medical history; in the presence of such factors, the patient is classified as high risk and in their absence as low risk. Although this approach is simple to perform, it has poor performance of the prediction of preeclampsia and does not provide patient-specific risks. This review describes a new approach that allows the estimation of patient-specific risks of delivery with preeclampsia before any specified gestational age by maternal demographic characteristics and medical history with biomarkers obtained either individually or in combination at any stage in pregnancy. In the competing risks approach, every woman has a personalized distribution of gestational age at delivery with preeclampsia; whether she experiences preeclampsia or not before a specified gestational age depends on competition between delivery before or after the development of preeclampsia. The personalized distribution comes from the application of Bayes theorem to combine a previous distribution, which is determined from maternal factors, with likelihoods from biomarkers. As new data become available, what were posterior probabilities take the role as the previous probability, and data collected at different stages are combined by repeating the application of Bayes theorem to form a new posterior at each stage, which allows for dynamic prediction of preeclampsia. The competing risk model can be used for precision medicine and risk stratification at different stages of pregnancy. In the first trimester, the model has been applied to identify a high-risk group that would benefit from preventative therapeutic interventions. In the second trimester, the model has been used to stratify the population into high-, intermediate-, and low-risk groups in need of different intensities of subsequent monitoring, thereby minimizing unexpected adverse perinatal events. The competing risks model can also be used in surveillance of women presenting to specialist clinics with signs or symptoms of hypertensive disorders; combination of maternal factors and biomarkers provide patient-specific risks for preeclampsia that lead to personalized stratification of the intensity of monitoring, with risks updated on each visit on the basis of biomarker measurements. How to calculate the risk of preeclampsia in women with a history of positive screeningAmerican Journal of Obstetrics & GynecologyVol. 223Issue 2PreviewWith the current demonstration of the benefits of aspirin initiated in early pregnancy to prevent the most severe and preterm forms of preeclampsia, there is a growing interest for the prediction of preterm preeclampsia in the first trimester of pregnancy.1 In the review by Wright et al,2 the authors reported that approximately 90% of women who will develop early preeclampsia could be identified using a competing risks approach in the first trimester of pregnancy, with a false-positive rate of 10%. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OCDer发布了新的文献求助10
21秒前
21秒前
yang发布了新的文献求助10
25秒前
OCDer完成签到,获得积分0
31秒前
46秒前
Zima发布了新的文献求助10
50秒前
Zima完成签到,获得积分10
1分钟前
年轻绮波完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jianglan完成签到,获得积分10
1分钟前
1分钟前
jason完成签到 ,获得积分10
1分钟前
1分钟前
刻苦的小土豆完成签到 ,获得积分10
1分钟前
香蕉觅云应助如意修洁采纳,获得10
2分钟前
雨jia完成签到,获得积分10
2分钟前
2分钟前
如意修洁发布了新的文献求助10
2分钟前
shier完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
shier发布了新的文献求助10
2分钟前
2分钟前
如意修洁完成签到 ,获得积分10
2分钟前
打打应助悦耳的乐荷采纳,获得10
2分钟前
Ava应助kl采纳,获得30
2分钟前
儒雅的冥王星完成签到,获得积分10
2分钟前
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
balko完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研小贩发布了新的文献求助10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814