Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime

机械容积 材料科学 堆积 荧光粉 位错 纳米技术 光电子学 复合材料 核磁共振 物理
作者
Maria Mukhina,Jason S. Tresback,Justin C. Ondry,Austin J. Akey,A. Paul Alivisatos,Nancy Kleckner
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (3): 4115-4133 被引量:43
标识
DOI:10.1021/acsnano.0c08890
摘要

Mechanoluminescent materials, which emit light in response to elastic deformation, are demanded for use as in situ stress sensors. ZnS doped with Mn is known to exhibit one of the lowest reported thresholds for appearance of mechanoluminescence, with repeatable light emission under contact pressure <10 MPa. The physical basis for such behavior remains as yet unclear. Here, reliable microscopic detection of mechanoluminescence of single ZnS:Mn microparticles, in combination with nanoscale structural characterization, provides evidence that the mechanoluminescent properties of these particles result from interplay between a non-centrosymmetric crystal lattice and its defects, viz., dislocations and stacking faults. Statistical analysis of the distributions of mechanoluminescence energy release trajectories reveals two distinct mechanisms of excitation: one attributable to a piezo-phototronic effect and the other due to dislocation motion. At pressures below 8.1 MPa, both mechanisms contribute to mechanoluminescent output, with a dominant contribution from the piezo-phototronic mechanism. In contrast, above 8.1 MPa, dislocation motion is the primary excitation source. For the piezo-phototronic mechanism, we propose a specific model that accounts for elastic ZnS:Mn mechanoluminescence under very low pressure. The charged interfaces in stacking faults lead to the presence of filled traps, which otherwise would be empty in the absence of the built-in electric field. Upon application of external stress, local enhancement of the piezoelectric field at the stacking faults' interfaces facilitates release of the trapped carriers and subsequent luminescence. This field enhancement explains how <10 MPa pressure produces thousands of photons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖果不甜完成签到,获得积分10
刚刚
无花果应助婷婷采纳,获得10
1秒前
2秒前
Akim应助刘佳慧采纳,获得10
4秒前
4秒前
尹天奇发布了新的文献求助10
4秒前
4秒前
田様应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
ccm应助科研通管家采纳,获得20
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
huang发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得20
7秒前
烟花应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
终梦应助科研通管家采纳,获得30
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
ccm应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
完美又槐应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
9秒前
lzr发布了新的文献求助10
9秒前
李爱国应助彼岸采纳,获得10
10秒前
hhh关注了科研通微信公众号
10秒前
李健的粉丝团团长应助sss采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818