APDS
雪崩光电二极管
材料科学
暗电流
光电子学
撞击电离
击穿电压
电离
光学
光电探测器
电压
物理
离子
量子力学
探测器
作者
Seunghyun Lee,S. H. Kodati,Bingtian Guo,Andrew H. Jones,Mariah Schwartz,M. Winslow,C. H. Grein,Theodore J. Ronningen,Joe C. Campbell,Sanjay Krishna
摘要
We report on the demonstration of Al0.85Ga0.15As0.56Sb0.44 (hereafter, AlGaAsSb) avalanche photodiodes (APDs) with a 1000 nm-thick multiplication layer. Such a thick AlGaAsSb device was grown by a digital alloy technique to avoid phase separation. The current-voltage measurements under dark and illumination conditions were performed to determine gain for the AlGaAsSb APDs. The highest gain was ∼ 42, and the avalanche initiation occurred at 21.6 V. The breakdown voltage was found to be around −53 V. The measured dark current densities of bulk and surface components were 6.0 μA/cm2 and 0.23 μA/cm, respectively. These values are about two orders of magnitude lower than those for previously reported 1550 nm-thick AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)]. Excess noise measurements showed that the AlGaAsSb APD has a low k of 0.01 (the ratio of electron and hole impact ionization coefficients) compared to Si APDs. The k of the 1000-nm AlGaAsSb APD is similar to that of the thick AlAsSb APDs (k ∼ 0.005) and 5–8 times lower than that of 170 nm-thick AlGaAsSb APDs (k ∼ 0.5–0.8). Increasing the thickness of the multiplication layer over 1000 nm can also reduce k further since the difference between electron and hole impact ionization coefficients becomes significant in this material system as the thickness of the multiplication layer increases. Therefore, this thick AlGaAsSb-based APD on an InP substrate shows the potential to be a high-performance multiplier that can be used with available short-wavelength infrared (SWIR) absorption layers for a SWIR APD.
科研通智能强力驱动
Strongly Powered by AbleSci AI