扩散阻挡层
阳极
材料科学
密度泛函理论
三元运算
电化学
过渡金属
MXenes公司
离子
扩散
单层
金属
开路电压
石墨烯
化学物理
无机化学
分析化学(期刊)
纳米技术
物理化学
化学
热力学
电压
计算化学
图层(电子)
电极
冶金
有机化学
催化作用
物理
量子力学
程序设计语言
生物化学
色谱法
计算机科学
作者
Baoxin Ge,Biyi Chen,Longhua Li
标识
DOI:10.1016/j.apsusc.2021.149177
摘要
Two-dimensional (2D) materials display special interest as for metal-ion batteries (MIBs) due to they have high specific surface area and unique electrochemical activity. Here, interactions between ternary transition metal chalcogenides Ti2PX2 (X = S, Se, Te) and metal-ion (Li, Na, K and Ca) are theoretically studied via density functional theory (DFT) calculations. Their metal-ion storage capabilities are systematically explored and compared with available experimental and theoretical information. Ti2PX2Li2 and Ti2PX2K2 exhibit the same storage capacity (281 mAhg−1), however K shows lower diffusion barrier (~0.07 eV) than Li (~0.17–0.21 eV). Although Ca shows significant large capacity (842–1685 mAhg−1), its diffusion barrier is higher than other ions. The small change in lattice parameter (Ti2PX2Na6: <1.2%), high capacity (842 mAhg−1 up to Ti2PX2Na6), low open circuit voltage (0.4–0.6 V) and low diffusion barrier energy (~0.1 eV) are found in Ti2PX2 for sodium-ion adsorption. These properties are superior as compared to other available 2D materials, such as graphene, MXenes (Ti3C2), MoS2 and so on. Our results indicate that Ti2PX2 monolayers may be promising for MIBs anode materials, especially for sodium-ion batteries (SIBs) applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI