脑-机接口
游标(数据库)
计算机科学
稳定器(航空)
神经活动
接口(物质)
不稳定性
人工神经网络
神经科学
脑电图
人工智能
心理学
物理
工程类
最大气泡压力法
气泡
机械工程
并行计算
机械
作者
Alan D. Degenhart,William E. Bishop,Emily R. Oby,Elizabeth C. Tyler‐Kabara,Steven M. Chase,Aaron P. Batista,Byron M. Yu
标识
DOI:10.1038/s41551-020-0542-9
摘要
The instability of neural recordings can render clinical brain-computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.
科研通智能强力驱动
Strongly Powered by AbleSci AI