Label-free discrimination of glioma brain tumors in different stages by surface enhanced Raman scattering

胶质瘤 拉曼散射 化学 拉曼光谱 曲面(拓扑) 生物物理学 癌症研究 光学 几何学 数学 生物 物理
作者
Jingwen Li,Chengde Wang,Yue Yao,Yali Zhu,Changchun Yan,Qichuan Zhuge,Lulu Qu,Caiqin Han
出处
期刊:Talanta [Elsevier]
卷期号:216: 120983-120983 被引量:29
标识
DOI:10.1016/j.talanta.2020.120983
摘要

According to the WHO classification criteria, the most common intracranial tumor gliomas can be divided into four grades based on their symptoms. Among them, Grade Ⅰ and Grade II are low-grade gliomas, and Grade III and Grade IV are high-grade gliomas. Because gliomas have a high lethal rate, they have received widespread attention in the medical field. Based on these circumstances, a rapid and facile surface enhanced Raman scattering (SERS) method using silver nano particle-decorated silver nanorod ([email protected]) as substrates were developed for the discrimination of gliomas. Compared with SERS-active silver nanoparticles and silver nanorod substrates, the prepared [email protected] substrates showed an outstanding SERS performance with an enhancement factor up to 1.37 × 109. Combined [email protected] substrate with principal component analysis (PCA), we achieved rapid discrimination of healthy brain tissue and gliomas at different grades. The spectra obtained from the tissue illustrate prominently spectral differences which can be applied to identify whether it came from a healthy region or from a glioma. The most prominently difference between the SERS spectrum of healthy brain tissue and that of gliomas at different grades is the reduction in quotient of two characteristic peaks at 653 and 724 cm−1. Furthermore, healthy brain tissue and Grade II gliomas as low grade gliomas as well as Grade III and Grade IV as high-grade gliomas can be clearly distinguished by three-dimensional PCA. Preliminary results indicate that the SERS spectra based on [email protected] substrates can be applied for a rapid identification owing to its simple preparation of specimen and high-speed spectral acquirement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MM发布了新的文献求助10
刚刚
刚刚
MOD发布了新的文献求助10
1秒前
LZY应助yaya采纳,获得10
1秒前
1秒前
1秒前
斯可发布了新的文献求助10
1秒前
tong关注了科研通微信公众号
2秒前
丘比特应助争当科研巨匠采纳,获得10
2秒前
HAHA完成签到,获得积分10
2秒前
踏实树叶完成签到,获得积分10
2秒前
troyqiujing完成签到,获得积分0
2秒前
REN应助有魅力的小甜瓜采纳,获得20
3秒前
ren发布了新的文献求助10
3秒前
Lucas应助三三搞科研采纳,获得50
4秒前
August完成签到,获得积分10
4秒前
奥里给发布了新的文献求助10
4秒前
yydsyk发布了新的文献求助30
5秒前
我的天啊发布了新的文献求助10
5秒前
Thi发布了新的文献求助10
5秒前
JamesPei应助北风采纳,获得10
5秒前
我是老大应助仁爱羊采纳,获得10
6秒前
ding应助欣慰雪巧采纳,获得10
6秒前
研友_VZG7GZ应助令狐擎宇采纳,获得10
6秒前
深情安青应助高木同学采纳,获得10
6秒前
6秒前
7秒前
活力的穆发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
燕子完成签到,获得积分20
8秒前
迷人三德完成签到,获得积分10
8秒前
9秒前
HHHHH完成签到,获得积分10
10秒前
ZW完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
琛哥物理发布了新的文献求助10
10秒前
顾小寒完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468830
求助须知:如何正确求助?哪些是违规求助? 3061848
关于积分的说明 9077239
捐赠科研通 2752315
什么是DOI,文献DOI怎么找? 1510388
科研通“疑难数据库(出版商)”最低求助积分说明 697771
邀请新用户注册赠送积分活动 697751