Label-free discrimination of glioma brain tumors in different stages by surface enhanced Raman scattering

胶质瘤 拉曼散射 化学 拉曼光谱 曲面(拓扑) 生物物理学 癌症研究 光学 生物 数学 几何学 物理
作者
Jingwen Li,Chengde Wang,Yue Yao,Yali Zhu,Changchun Yan,Qichuan Zhuge,Lulu Qu,Caiqin Han
出处
期刊:Talanta [Elsevier BV]
卷期号:216: 120983-120983 被引量:29
标识
DOI:10.1016/j.talanta.2020.120983
摘要

According to the WHO classification criteria, the most common intracranial tumor gliomas can be divided into four grades based on their symptoms. Among them, Grade Ⅰ and Grade II are low-grade gliomas, and Grade III and Grade IV are high-grade gliomas. Because gliomas have a high lethal rate, they have received widespread attention in the medical field. Based on these circumstances, a rapid and facile surface enhanced Raman scattering (SERS) method using silver nano particle-decorated silver nanorod ([email protected]) as substrates were developed for the discrimination of gliomas. Compared with SERS-active silver nanoparticles and silver nanorod substrates, the prepared [email protected] substrates showed an outstanding SERS performance with an enhancement factor up to 1.37 × 109. Combined [email protected] substrate with principal component analysis (PCA), we achieved rapid discrimination of healthy brain tissue and gliomas at different grades. The spectra obtained from the tissue illustrate prominently spectral differences which can be applied to identify whether it came from a healthy region or from a glioma. The most prominently difference between the SERS spectrum of healthy brain tissue and that of gliomas at different grades is the reduction in quotient of two characteristic peaks at 653 and 724 cm−1. Furthermore, healthy brain tissue and Grade II gliomas as low grade gliomas as well as Grade III and Grade IV as high-grade gliomas can be clearly distinguished by three-dimensional PCA. Preliminary results indicate that the SERS spectra based on [email protected] substrates can be applied for a rapid identification owing to its simple preparation of specimen and high-speed spectral acquirement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Japrin完成签到,获得积分10
1秒前
荔枝发布了新的文献求助10
1秒前
Hello应助ZDN采纳,获得10
1秒前
标致电源发布了新的文献求助10
2秒前
yar应助科研通管家采纳,获得10
2秒前
whatever应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
han应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
zwhy完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
科研雷锋应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
DijiaXu应助科研通管家采纳,获得10
4秒前
JYYJ发布了新的文献求助10
5秒前
清欢完成签到,获得积分10
5秒前
Tina发布了新的文献求助10
6秒前
123456发布了新的文献求助10
6秒前
7秒前
KaK发布了新的文献求助10
8秒前
在水一方应助oushichan采纳,获得10
8秒前
9秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014