亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine‐learning scoring functions for structure‐based virtual screening

化学信息学 计算机科学 虚拟筛选 人工智能 机器学习 生物信息学 生物 药物发现
作者
Hongjian Li,Kam‐Heung Sze,Gang Lü,Pedro J. Ballester
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:11 (1) 被引量:155
标识
DOI:10.1002/wcms.1478
摘要

Abstract Molecular docking predicts whether and how small molecules bind to a macromolecular target using a suitable 3D structure. Scoring functions for structure‐based virtual screening primarily aim at discovering which molecules bind to the considered target when these form part of a library with a much higher proportion of non‐binders. Classical scoring functions are essentially models building a linear mapping between the features describing a protein–ligand complex and its binding label. Machine learning, a major subfield of artificial intelligence, can also be used to build fast supervised learning models for this task. In this review, we analyzed such machine‐learning scoring functions for structure‐based virtual screening in the period 2015–2019. We have discussed what the shortcomings of current benchmarks really mean and what valid alternatives have been employed. The latter retrospective studies observed that machine‐learning scoring functions were substantially more accurate, in terms of higher hit rates and potencies, than the classical scoring functions they were compared to. Several of these machine‐learning scoring functions were also employed in prospective studies, in which mid‐nanomolar binders with novel chemical structures were directly discovered without any potency optimization. We have thus highlighted the codes and webservers that are available to build or apply machine‐learning scoring functions to prospective structure‐based virtual screening studies. A discussion of prospects for future work completes this review. This article is categorized under: Computer and Information Science > Chemoinformatics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zone完成签到 ,获得积分10
3秒前
11秒前
寒冷河马发布了新的文献求助10
12秒前
12秒前
14秒前
冷酷飞飞完成签到 ,获得积分10
16秒前
yuanyuan发布了新的文献求助10
16秒前
情怀应助李光辉采纳,获得10
25秒前
zy完成签到 ,获得积分10
32秒前
李光辉完成签到,获得积分20
34秒前
英俊的铭应助yuanyuan采纳,获得10
35秒前
优美紫槐应助张志超采纳,获得10
36秒前
38秒前
40秒前
syalonyui发布了新的文献求助10
42秒前
44秒前
桐桐应助科研通管家采纳,获得10
44秒前
44秒前
苏幕遮发布了新的文献求助10
45秒前
JamesPei应助冰糖葫芦娃采纳,获得10
47秒前
DDDDD完成签到 ,获得积分10
52秒前
共享精神应助苏幕遮采纳,获得10
54秒前
1分钟前
文静水池完成签到,获得积分10
1分钟前
年鱼精完成签到 ,获得积分10
1分钟前
1分钟前
年轻豌豆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
酷波er应助Zenia采纳,获得10
1分钟前
深情安青应助shuiyi采纳,获得10
1分钟前
1分钟前
司空晓山发布了新的文献求助10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
Michelangelo_微风完成签到,获得积分10
1分钟前
choshuenco发布了新的文献求助20
1分钟前
1分钟前
1分钟前
Zenia发布了新的文献求助10
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898