Machine‐learning scoring functions for structure‐based virtual screening

化学信息学 计算机科学 虚拟筛选 人工智能 机器学习 生物信息学 生物 药物发现
作者
Hongjian Li,Kam‐Heung Sze,Gang Lü,Pedro J. Ballester
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:11 (1) 被引量:155
标识
DOI:10.1002/wcms.1478
摘要

Abstract Molecular docking predicts whether and how small molecules bind to a macromolecular target using a suitable 3D structure. Scoring functions for structure‐based virtual screening primarily aim at discovering which molecules bind to the considered target when these form part of a library with a much higher proportion of non‐binders. Classical scoring functions are essentially models building a linear mapping between the features describing a protein–ligand complex and its binding label. Machine learning, a major subfield of artificial intelligence, can also be used to build fast supervised learning models for this task. In this review, we analyzed such machine‐learning scoring functions for structure‐based virtual screening in the period 2015–2019. We have discussed what the shortcomings of current benchmarks really mean and what valid alternatives have been employed. The latter retrospective studies observed that machine‐learning scoring functions were substantially more accurate, in terms of higher hit rates and potencies, than the classical scoring functions they were compared to. Several of these machine‐learning scoring functions were also employed in prospective studies, in which mid‐nanomolar binders with novel chemical structures were directly discovered without any potency optimization. We have thus highlighted the codes and webservers that are available to build or apply machine‐learning scoring functions to prospective structure‐based virtual screening studies. A discussion of prospects for future work completes this review. This article is categorized under: Computer and Information Science > Chemoinformatics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
立na发布了新的文献求助30
刚刚
1秒前
帅b发布了新的文献求助10
1秒前
胡春柳完成签到,获得积分10
1秒前
Chroninus完成签到,获得积分10
1秒前
1秒前
上官若男应助橘子林采纳,获得10
2秒前
2秒前
佐罗完成签到 ,获得积分10
2秒前
2秒前
852应助高源伯采纳,获得30
2秒前
XianShen发布了新的文献求助10
2秒前
墨易完成签到,获得积分10
2秒前
qingchi完成签到,获得积分10
2秒前
啊懂发布了新的文献求助10
3秒前
1223发布了新的文献求助10
3秒前
英姑应助许戈追求进步采纳,获得10
3秒前
4秒前
七叶树完成签到,获得积分10
4秒前
4秒前
爆米花应助清爽泥猴桃采纳,获得10
4秒前
皮蛋完成签到,获得积分10
5秒前
彭于彦祖应助奔奔采纳,获得30
5秒前
5秒前
jxt完成签到,获得积分10
5秒前
乐乐应助亚尔采纳,获得10
6秒前
Leona666发布了新的文献求助100
7秒前
上官若男应助拼搏的从雪采纳,获得10
7秒前
MMM发布了新的文献求助10
7秒前
忧心的捕完成签到,获得积分10
7秒前
自由妙竹完成签到 ,获得积分10
7秒前
kurumi0601完成签到,获得积分10
7秒前
7秒前
端庄千琴完成签到,获得积分10
7秒前
rorraine_xu完成签到,获得积分10
7秒前
在水一方应助江河JT采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
fengjingjun完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786