双金属片
四方晶系
磷化物
分解水
材料科学
过渡金属
催化作用
纳米颗粒
塔菲尔方程
镍
化学工程
化学
无机化学
晶体结构
结晶学
物理化学
纳米技术
电化学
电极
有机化学
冶金
光催化
工程类
作者
Ebtesam H. Eladgham,Dylan D. Rodene,Rajib Sarkar,Indika U. Arachchige,Ram B. Gupta
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2020-08-06
卷期号:3 (8): 8199-8207
被引量:33
标识
DOI:10.1021/acsanm.0c01624
摘要
Electrochemical water splitting represents a sustainable method to produce molecular hydrogen, a foreseeable clean energy alternative to exhaustible fossil fuels. Transition-metal phosphides (TMPs) are emerging as earth-abundant catalysts for water splitting, and their activity can be further improved by incorporation of synergetic metals to produce bimetallic TMP catalysts. Herein, two distinct colloidal chemistry methods were developed to produce discrete nickel molybdenum phosphide (Ni–Mo–P) nanoparticles (NPs) that show varying crystal structures, morphologies, and compositions as alkaline hydrogen evolution reaction (HER) catalysts. The one-pot route produced smaller homogeneous NPs, ranging from 4 to 11 nm, with a near-spherical morphology. The two-pot synthesis resulted in larger heterogeneous NPs, ranging from ∼50 to 80 nm, with a polygonal morphology. Both nanostructures show either a hexagonal Ni2P or tetragonal Ni12P5 crystal structure and a shift in X-ray diffraction patterns to lower 2θ angles, consistent with the formation of bimetallic TMPs. The X-ray photoelectron spectra indicate the presence of partially charged core species (Niδ+, Moδ+, and Pδ−) as well as minor higher valent (Nin+, Mon+, and PO43–, n ≥ 2) surface species, presumably bound to surfactant ligands and/or oxides. Among heterogeneous and homogeneous NPs investigated, the hexagonal Ni2–xMoxP NPs show lower overpotentials (i.e., high HER activity) in comparison to tetragonal Ni12–xMoxP5 NPs. The HER activity of both nanostructures follows a mixed Volmer–Heyrovsky reaction mechanism consistent with Tafel slopes of 49.5–100.6 mV/dec. The homogeneous and heterogeneous Ni1.87Mo0.13P NPs showed the lowest overpotentials of 101 and 96 mV, respectively, and outperformed both hexagonal Ni2P (156 mV) and tetragonal Ni12–xMoxP (198 mV) NPs at a current density of −10 mA/cm2. This work provides insights into the design and synthesis of high-efficiency TMP nanostructures for alkaline HER studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI