亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthesis of 3D-MoS2 nanoflowers with tunable surface area for the application in photocatalysis and SERS based sensing

光降解 甲基橙 光催化 罗丹明B 材料科学 罗丹明6G 化学工程 比表面积 纳米技术 透射电子显微镜 分子 纳米材料 亚甲蓝 光化学 催化作用 化学 有机化学 工程类
作者
Jaspal Singh,Rishikesh,Sanjeev Kumar,R. K. Soni
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:849: 156502-156502 被引量:128
标识
DOI:10.1016/j.jallcom.2020.156502
摘要

Nanostructured two-dimensional transition metal dichalcogenides (2D-TMDCs) have been attracting great attention in the field of environmental remediation and sensing due to their high surface area and layer dependent optical and structural properties. Surface area dependent performance of MoS2 nanostructures is one of the important aspects which need to be explored for various environmental applications. In this work, MoS2 nanoflowers with tunable surface area (5–20 m2/g) were prepared by the facile hydrothermal method and their surface area dependent SERS and photodegradation activity were explored. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies assure the growth of MoS2 nanoflowers by the assembly of 2D-MoS2 nanosheets. MoS2 nanoflowers exhibit excellent sunlight-induced photocatalytic activity towards the degradation of methylene blue, methyl orange, rhodamine 6G and oxytetracycline hydrochloride molecules. We report that a very low amount (0.025 mg) of MoS2 nanoflowers (20 m2/g) can tremendously decompose 10 μM of MB, MO and R6G dye molecules in just 12 min, 30 min and 45 min respectively and 0.5 mg/10 mL OTC-HCl molecule in 60 min under sunlight which has not been reported yet. MoS2 nanoflowers based substrates show the remarkable SERS based detection towards the rhodamine B (RhB) molecule. Tunability in the SERS for the account of different surface areas poses by the different MoS2 sample has been well explored. Charge transfer mechanism for ultrafast SERS detection and enhanced photodegradation activity has been proposed and explained precisely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵完成签到,获得积分10
2秒前
2秒前
清浅发布了新的文献求助10
3秒前
雪霁完成签到,获得积分10
3秒前
5秒前
6秒前
15秒前
俊逸的念寒完成签到 ,获得积分10
17秒前
556应助清浅采纳,获得10
23秒前
冷静的振家完成签到,获得积分10
23秒前
领导范儿应助chen采纳,获得10
26秒前
28秒前
30秒前
30秒前
31秒前
fay发布了新的文献求助10
32秒前
33秒前
37秒前
41秒前
chen完成签到,获得积分10
42秒前
火山蜗牛完成签到,获得积分10
44秒前
chen发布了新的文献求助10
46秒前
46秒前
王钢铁完成签到,获得积分10
46秒前
科研通AI2S应助盛夏如花采纳,获得10
47秒前
51秒前
小森华东完成签到 ,获得积分10
53秒前
倒逆之蝶发布了新的文献求助10
55秒前
在水一方应助帅气的亦玉采纳,获得10
55秒前
1分钟前
1分钟前
Bin发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lld发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984