光催化
石墨氮化碳
吸附
材料科学
核化学
铜绿微囊藻
纳米颗粒
化学工程
化学
藻类
催化作用
细菌
蓝藻
纳米技术
生物
植物
有机化学
工程类
遗传学
作者
Xuesong Cao,Le Yue,Fei Lian,Chuanxi Wang,Bingxu Cheng,Jinze Lv,Zhenyu Wang,Baoshan Xing
标识
DOI:10.1016/j.jhazmat.2020.123621
摘要
In this work, graphitic carbon nitride (g-C3N4) and CuO nanoparticles doped g-C3N4 (Cu-g-C3N4) was synthesized, and the mechanisms of humic acid (HA) impact on the photocatalytic antialgal activities of g-C3N4 and Cu-g-C3N4 to harmful algae were investigated. The 72 h median effective concentrations of g-C3N4 and Cu-g-C3N4 to two algae (Microcystis aeruginosa, Chlorella vulgaris) were (56.4, 89.6 mg/L) and (12.5, 20.6 mg/L), respectively. Cu-g-C3N4 exhibited higher photocatalytic antialgal activity than g-C3N4 because that: I) Cu-g-C3N4 was easier to aggregate with algal cells due to its lower surface potential and higher hydrophobicity than g-C3N4; II) Cu-g-C3N4 generated more O2−, OH*, and h+ due to its higher full-wavelength light utilization efficiency and higher electron-hole pairs separation efficiency than g-C3N4. HA (10 mg/L) inhibited the photocatalytic antialgal activity of g-C3N4, however, HA had no effect on that of Cu-g-C3N4. The mechanisms were that: I) doped CuO nanoparticles occupied the adsorption sites of HA on g-C3N4, which alleviated the inhibition of HA on the g-C3N4-algae heteroaggregation; II) HA adsorbed on CuO nanoparticles enhanced the oxygen reduction rate of Cu-g-C3N4. This work provides new insight into the inhibition mechanisms of NOM on g-C3N4 photocatalytic antialgal activity and addresses the optimization of g-C3N4 for environmental application.
科研通智能强力驱动
Strongly Powered by AbleSci AI