From Histology and Imaging Data to Models for In-Stent Restenosis

再狭窄 支架 医学 新生内膜增生 管腔(解剖学) 人口 狭窄 血管成形术 放射科 心脏病学 内科学 环境卫生
作者
Claudia Maria Amatruda,Carles Bona-Casas,Brandis Keller,Hannan Tahir,Gabriele Dubini,Alfons G. Hoekstra,D. Rodney Hose,Patricia V. Lawford,Francesco Migliavacca,Andrew Narracott,Julian Gunn
出处
期刊:International Journal of Artificial Organs [SAGE Publishing]
卷期号:37 (10): 786-800 被引量:18
标识
DOI:10.5301/ijao.5000336
摘要

The implantation of stents has been used to treat coronary artery stenosis for several decades. Although stenting is successful in restoring the vessel lumen and is a minimally invasive approach, the long-term outcomes are often compromised by in-stent restenosis (ISR). Animal models have provided insights into the pathophysiology of ISR and are widely used to evaluate candidate drug inhibitors of ISR. Such biological models allow the response of the vessel to stent implantation to be studied without the variation of lesion characteristics encountered in patient studies. This paper describes the development of complementary in silico models employed to improve the understanding of the biological response to stenting using a porcine model of restenosis. This includes experimental quantification using microCT imaging and histology and the use of this data to establish numerical models of restenosis. Comparison of in silico results with histology is used to examine the relationship between spatial localization of fluid and solid mechanics stimuli immediately post-stenting. Multi-scale simulation methods are employed to study the evolution of neointimal growth over time and the variation in the extent of neointimal hyperplasia within the stented region. Interpretation of model results through direct comparison with the biological response contributes to more detailed understanding of the pathophysiology of ISR, and suggests the focus for follow-up studies. In conclusion we outline the challenges which remain to both complete our understanding of the mechanisms responsible for restenosis and translate these models to applications in stent design and treatment planning at both population-based and patient-specific levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxyxy完成签到 ,获得积分20
刚刚
sjj完成签到,获得积分10
刚刚
1秒前
1秒前
梦旋发布了新的文献求助10
2秒前
2秒前
2秒前
Hello应助新一采纳,获得10
4秒前
accepted完成签到,获得积分10
5秒前
可靠若云完成签到,获得积分10
6秒前
万能图书馆应助duxy采纳,获得10
6秒前
yrh发布了新的文献求助10
6秒前
小辣椒发布了新的文献求助10
7秒前
9秒前
KKKZ发布了新的文献求助10
10秒前
11秒前
12秒前
STAR应助初色采纳,获得10
14秒前
lishi发布了新的文献求助10
15秒前
yu完成签到,获得积分10
15秒前
隐形的雁完成签到,获得积分10
18秒前
duxy发布了新的文献求助10
18秒前
RRRRR1完成签到,获得积分10
19秒前
一昂杨完成签到 ,获得积分20
21秒前
22秒前
22秒前
LHL发布了新的文献求助50
23秒前
23秒前
24秒前
Gao_Z_X完成签到 ,获得积分10
24秒前
yolanda发布了新的文献求助10
27秒前
奋斗绿凝发布了新的文献求助10
27秒前
asdzzzas发布了新的文献求助10
27秒前
初色完成签到,获得积分10
28秒前
29秒前
33秒前
z11完成签到,获得积分10
33秒前
36秒前
38秒前
细心的冬灵完成签到,获得积分10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673916
求助须知:如何正确求助?哪些是违规求助? 3229353
关于积分的说明 9785316
捐赠科研通 2939948
什么是DOI,文献DOI怎么找? 1611486
邀请新用户注册赠送积分活动 760931
科研通“疑难数据库(出版商)”最低求助积分说明 736344