亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Histology and Imaging Data to Models for In-Stent Restenosis

再狭窄 支架 医学 新生内膜增生 管腔(解剖学) 人口 狭窄 血管成形术 放射科 心脏病学 内科学 环境卫生
作者
Claudia Maria Amatruda,Carles Bona-Casas,Brandis Keller,Hannan Tahir,Gabriele Dubini,Alfons G. Hoekstra,D. Rodney Hose,Patricia V. Lawford,Francesco Migliavacca,Andrew Narracott,Julian Gunn
出处
期刊:International Journal of Artificial Organs [SAGE]
卷期号:37 (10): 786-800 被引量:18
标识
DOI:10.5301/ijao.5000336
摘要

The implantation of stents has been used to treat coronary artery stenosis for several decades. Although stenting is successful in restoring the vessel lumen and is a minimally invasive approach, the long-term outcomes are often compromised by in-stent restenosis (ISR). Animal models have provided insights into the pathophysiology of ISR and are widely used to evaluate candidate drug inhibitors of ISR. Such biological models allow the response of the vessel to stent implantation to be studied without the variation of lesion characteristics encountered in patient studies. This paper describes the development of complementary in silico models employed to improve the understanding of the biological response to stenting using a porcine model of restenosis. This includes experimental quantification using microCT imaging and histology and the use of this data to establish numerical models of restenosis. Comparison of in silico results with histology is used to examine the relationship between spatial localization of fluid and solid mechanics stimuli immediately post-stenting. Multi-scale simulation methods are employed to study the evolution of neointimal growth over time and the variation in the extent of neointimal hyperplasia within the stented region. Interpretation of model results through direct comparison with the biological response contributes to more detailed understanding of the pathophysiology of ISR, and suggests the focus for follow-up studies. In conclusion we outline the challenges which remain to both complete our understanding of the mechanisms responsible for restenosis and translate these models to applications in stent design and treatment planning at both population-based and patient-specific levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyyy发布了新的文献求助30
1秒前
科研通AI2S应助llllzzzyyyy采纳,获得10
8秒前
liu95完成签到 ,获得积分10
16秒前
morena发布了新的文献求助10
16秒前
Garry应助Benhnhk21采纳,获得10
17秒前
24秒前
雷九万班完成签到 ,获得积分10
25秒前
jacob258完成签到 ,获得积分10
34秒前
John完成签到,获得积分10
35秒前
西瓜完成签到 ,获得积分10
37秒前
41秒前
42秒前
55秒前
Sophiaaa完成签到 ,获得积分10
57秒前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
licnyu完成签到,获得积分20
1分钟前
好困应助morena采纳,获得10
1分钟前
卓卓卓发布了新的文献求助10
1分钟前
彭于晏应助licnyu采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130230
求助须知:如何正确求助?哪些是违规求助? 2780956
关于积分的说明 7750532
捐赠科研通 2436201
什么是DOI,文献DOI怎么找? 1294557
科研通“疑难数据库(出版商)”最低求助积分说明 623731
版权声明 600590