Predicting Protein-protein Interactions from Protein Sequences Using Probabilistic Neural Network and Feature Combination

计算机科学 概率神经网络 人工神经网络 概率逻辑 特征(语言学) 人工智能 模式识别(心理学) 机器学习 时滞神经网络 语言学 哲学
作者
Yaou Zhao
出处
期刊:The Journal of Information and Computational Science [Binary Information Press]
卷期号:11 (7): 2397-2406 被引量:6
标识
DOI:10.12733/jics20103423
摘要

Identifying Protein-protein Interactions (PPIs) can provide a deep insight in cellular processes and biochemical events. Although many computational methods have been proposed for this work, there are still many difficulties due to the high computation complexity and noisy data. In this paper, a novel method based on Probabilistic Neural Network (PNN) with feature combination was proposed for PPIs prediction. PNN is a statistic model and is robust to noise. It need not to be trained compared with other computational models such as Artificial Neural Network (ANN) and Support Vector Machine (SVM). So it is very fast and can deal with large scale noisy PPIs data more properly. In addition, in order to obtain the more informative features from protein pairs, three most import physicochemical properties were adopted for featuring, then the three different features are combined as the input for PNN training and the different combinations were tested to get the best combination. Experiments show that our proposed method produces the best performance compared with the other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
angellas发布了新的文献求助10
1秒前
cm完成签到,获得积分10
1秒前
rong发布了新的文献求助10
2秒前
orixero应助苏雅霏采纳,获得10
3秒前
超超完成签到,获得积分10
4秒前
4秒前
开心完成签到,获得积分10
5秒前
Yamin发布了新的文献求助10
5秒前
orixero应助Zz采纳,获得10
5秒前
醉熏的涫发布了新的文献求助10
7秒前
丘比特应助bettylei采纳,获得10
7秒前
哆啦A梦完成签到,获得积分10
7秒前
7秒前
善学以致用应助超超采纳,获得10
7秒前
NCU-Xzzzz完成签到,获得积分10
8秒前
YXHTCM完成签到,获得积分10
8秒前
YAN完成签到,获得积分20
8秒前
sxd20103316完成签到,获得积分10
9秒前
林木木完成签到,获得积分20
9秒前
三号技师发布了新的文献求助10
9秒前
10秒前
asdfqwer发布了新的文献求助10
10秒前
10秒前
11秒前
wuniuniu发布了新的文献求助10
12秒前
Yamin完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
甜蜜慕凝发布了新的文献求助10
13秒前
13秒前
14秒前
深情安青应助爱听歌小覃采纳,获得10
14秒前
慕青应助侯聪雅采纳,获得10
14秒前
YAN发布了新的文献求助50
15秒前
zfm发布了新的文献求助10
16秒前
璨澄发布了新的文献求助10
17秒前
Yuri发布了新的文献求助10
18秒前
Owen应助venner采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959007
求助须知:如何正确求助?哪些是违规求助? 3505322
关于积分的说明 11123366
捐赠科研通 3236970
什么是DOI,文献DOI怎么找? 1788969
邀请新用户注册赠送积分活动 871459
科研通“疑难数据库(出版商)”最低求助积分说明 802805