Predicting Protein-protein Interactions from Protein Sequences Using Probabilistic Neural Network and Feature Combination

计算机科学 概率神经网络 人工神经网络 概率逻辑 特征(语言学) 人工智能 模式识别(心理学) 机器学习 时滞神经网络 语言学 哲学
作者
Yaou Zhao
出处
期刊:The Journal of Information and Computational Science [Binary Information Press]
卷期号:11 (7): 2397-2406 被引量:6
标识
DOI:10.12733/jics20103423
摘要

Identifying Protein-protein Interactions (PPIs) can provide a deep insight in cellular processes and biochemical events. Although many computational methods have been proposed for this work, there are still many difficulties due to the high computation complexity and noisy data. In this paper, a novel method based on Probabilistic Neural Network (PNN) with feature combination was proposed for PPIs prediction. PNN is a statistic model and is robust to noise. It need not to be trained compared with other computational models such as Artificial Neural Network (ANN) and Support Vector Machine (SVM). So it is very fast and can deal with large scale noisy PPIs data more properly. In addition, in order to obtain the more informative features from protein pairs, three most import physicochemical properties were adopted for featuring, then the three different features are combined as the input for PNN training and the different combinations were tested to get the best combination. Experiments show that our proposed method produces the best performance compared with the other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Heart_of_Stone完成签到 ,获得积分10
6秒前
Army616完成签到,获得积分10
11秒前
研友_8Y2DXL完成签到,获得积分10
13秒前
优秀的白卉完成签到 ,获得积分10
15秒前
黄黄黄完成签到 ,获得积分20
15秒前
初夏的百褶裙完成签到,获得积分10
15秒前
sora完成签到,获得积分10
15秒前
25秒前
按时毕业完成签到,获得积分20
28秒前
33秒前
Xiaohui_Yu完成签到,获得积分10
35秒前
范白容完成签到 ,获得积分0
37秒前
花不语发布了新的文献求助10
37秒前
完美世界应助花不语采纳,获得10
51秒前
小于要毕业完成签到 ,获得积分10
53秒前
xuxu完成签到 ,获得积分10
54秒前
航行天下完成签到 ,获得积分10
1分钟前
饱满香彤完成签到 ,获得积分10
1分钟前
朴艺晨完成签到 ,获得积分10
1分钟前
dajiejie完成签到 ,获得积分10
1分钟前
望向天空的鱼完成签到 ,获得积分10
1分钟前
Fresh完成签到 ,获得积分10
1分钟前
勤奋完成签到 ,获得积分10
1分钟前
积极凌兰完成签到 ,获得积分10
1分钟前
changfox完成签到,获得积分10
1分钟前
哎呀哎呀呀完成签到,获得积分10
1分钟前
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
管夜白发布了新的文献求助10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
1分钟前
marc107完成签到,获得积分10
1分钟前
求助人员发布了新的文献求助10
1分钟前
guajiguaji完成签到,获得积分10
1分钟前
管夜白完成签到,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
打打应助绝望的老实人采纳,获得10
1分钟前
怎么办完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689402
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118