胰岛素
肠促胰岛素
内分泌学
内科学
下调和上调
胰岛素受体底物
IRS1
生长因子
化学
胰岛素受体
IRS2
受体
分泌物
生物
生物化学
糖尿病
胰岛素抵抗
2型糖尿病
医学
基因
作者
Michele H. Johnson,Elvira González de Mejı́a
标识
DOI:10.1021/acs.jafc.6b00239
摘要
Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry–50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI