已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Understanding Acid Reaction and Diffusion in Chemically Amplified Photoresists: An Approach at the Molecular Level

抵抗 扩散 材料科学 聚合物 纳米尺度 纳米技术 临界尺寸 化学物理 化学 光学 物理 复合材料 热力学 图层(电子)
作者
Pedro J. Rodríguez-Cantó,Ulrich Nickel,Rafael Abargues
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:115 (42): 20367-20374 被引量:13
标识
DOI:10.1021/jp2027548
摘要

Acid diffusion in chemically amplified resist might limit the ultimate minimum half-pitch that can be achieved with high sensitivity resists unless diffusion length is reduced until new methods of sensitizing resists are found. Precise knowledge of molecular dynamics of resist materials and advanced techniques need to be developed actively for this issue. In this sense, computer simulations have become a valuable tool in terms of reducing time and costs. However, simulations are generally based on continuum or mesoscale models, which are unable to accurately predict variations at the molecular level. Deeper understanding and investigation of the coupled reaction-diffusion kinetics at the molecular scale during the postexposure bake (PEB) become crucial to achieve nanoscale features with good critical dimension control and good line-edge roughness. In this work we have developed a molecular level approach for understanding of the coupled acid-catalyzed diffusion process in chemically amplified resist systems. Here, the molecules of photoacid generator are selected as the building blocks of a three-dimensional grid. Reaction and diffusion of the photoconverted acid molecules during the PEB step will produce resist volumes of cleaved polymers. After a certain PEB time τ, these created volumes produced by adjacent acids will almost contact each other, enabling the subsequent development of the polymer. We also determine this parameter τ by means of experiments with real resist systems and investigate the influence of the process conditions on it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
lankeren关注了科研通微信公众号
3秒前
子翱完成签到 ,获得积分10
3秒前
Echo1完成签到,获得积分10
3秒前
asaki完成签到,获得积分10
4秒前
悠悠发布了新的文献求助10
4秒前
潘润朗完成签到 ,获得积分10
6秒前
丰富源智完成签到,获得积分10
6秒前
bkagyin应助swordlee采纳,获得10
6秒前
zxpl123456发布了新的文献求助10
7秒前
NicoLi应助巫马尔槐采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
复方蛋酥卷完成签到,获得积分10
9秒前
葡萄味的果茶完成签到 ,获得积分10
10秒前
11秒前
heyan完成签到,获得积分10
11秒前
11秒前
Kashing完成签到,获得积分10
12秒前
13秒前
悠悠完成签到,获得积分20
13秒前
15秒前
15秒前
十五亿发布了新的文献求助10
16秒前
cnspower发布了新的文献求助30
19秒前
日出发布了新的文献求助30
19秒前
萧奕尘发布了新的文献求助10
20秒前
葱饼完成签到 ,获得积分10
20秒前
ren完成签到,获得积分20
23秒前
24秒前
黑巧的融化完成签到 ,获得积分10
24秒前
黑翅鸢完成签到 ,获得积分10
25秒前
852应助Ffpcjwcx采纳,获得10
25秒前
25秒前
26秒前
xuzb完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555546
求助须知:如何正确求助?哪些是违规求助? 3131279
关于积分的说明 9390339
捐赠科研通 2830883
什么是DOI,文献DOI怎么找? 1556168
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803