库仑
激子
半导体
化学物理
电子
有机半导体
电子转移
俘获
原子物理学
电子空穴
材料科学
有机太阳能电池
接受者
库仑爆炸
物理
分子物理学
凝聚态物理
光电子学
化学
电离
物理化学
量子力学
核磁共振
生态学
生物
离子
聚合物
作者
Nicholas R. Monahan,Kristopher Williams,Bharat Kumar,Colin Nuckolls,Xiaolei Zhu
标识
DOI:10.1103/physrevlett.114.247003
摘要
How an electron-hole pair escapes the Coulomb potential at a donor-acceptor interface has been a key issue in organic photovoltaic research. Recent evidence suggests that long-distance charge separation can occur on ultrafast time scales, yet the underlying mechanism remains unclear. Here we use charge transfer excitons (CTEs) across an organic semiconductor-vacuum interface as a model and show that nascent hot CTEs can spontaneously climb up the Coulomb potential within 100 fs. This process is driven by entropic gain due to the rapid rise in density of states with increasing electron-hole separation. In contrast, the lowest CTE cannot delocalize, but undergoes self-trapping and recombination.
科研通智能强力驱动
Strongly Powered by AbleSci AI